
University of Portsmouth
BSc (Hons) Computer Science
Second Year

Operating Systems and Internetworking (OSINT)
M30233
September 2023 - January 2024
20 Credits

Thomas Boxall
up2108121@myport.ac.uk

M30233 (OSINT) CONTENTS

Contents

I Operating Systems 2

1 Lecture - Introduction (2023-09-26) 3

2 Lecture - Concurrency (2023-10-03) 8

3 Lecture - Mutual Exclusion (2023-10-10) 12

4 Lecture - Synchronisation & Deadlock (2023-10-17) 16

5 Lecture - Processes and Scheduling (2023-10-31) 19

6 Lecture - Inter-Process Communication (2023-11-07) 23

7 Lecture - File Systems (2023-11-21) 26

8 Async lecture - Virtual Memory (2023-12-02) 29

9 Lecture - Introduction to Architectures (2023-11-28) 33

10 Lecture - Modern Processors (2023-12-05) 37

II Internetworking 40

11 Lecture - Networking Services: DNS, DHCP, etc (2023-09-25) 41

12 Lecture - IP Addresses & Subnetting (2023-10-02) 45

13 Lecture - VLSM and Supernetting (2023-10-16) 50

14 Lecture - Supernetting & CIDR (2023-10-30) 52

15 Lecture - Internet Routing (2023-11-06) 54

16 Lecture - Routing Information Protocol (2023-11-13) 59

17 Lecture - Open Shortest Path First (2023-11-20) 62

18 Lecture - Border Gateway Protocol (2023-11-23) 65

19 Lecture - Routing Security (2023-12-04) 69

compiled at
2024-01-05 16:03:11Z

1 of 70 Thomas Boxall

Theme I

Operating Systems

2

M30233 (OSINT) PAGE 1. INTRODUCTION

Page 1

Lecture - Introduction
� 2023-09-26 � 13:00 � Tamer

1.1 Operating Systems
The Operating System is a special type of software which controls the hardware. It is not the desktop,
as the desktop, start screen and any other GUI software is provided by a suite of application level
software which exists at a higher level than that of the operating system. The operating system is
only accessible by application programs, not directly from the user. The user cannot interact with the
hardware directly.

Figure 1.1: Location of the operating system in relation to the user, applications and hardware

1.1.1 What does it do?

The operating system is a piece of systems software that manages the computer’s hardware, resources
and control processing. It allows multiple computational processes and users to share a processor

compiled at
2024-01-05 16:03:11Z

3 of 70 Thomas Boxall

M30233 (OSINT) PAGE 1. INTRODUCTION

simultaneously, protect data from unauthorised access and keep independent input / output (I/O)
devices operating correctly.

The operating system provides common services for application software, making developers lives
easier as the hardware interfacing has already been done for them. Users cannot run any software
application without it.

1.1.2 Characteristics of the Operating Systems

There are two key characteristics of the Operating System.

1.1.2.1 Extended Machine

The part of the Operating System which behaves as an extended machine deals with the Input /
Output devices which involves reading and writing control registers, handling interrupts etc. If a
mistake is made, it will crash the entire computer. The Operating system provides a cleaner, safer,
higher level set of operations for doing these - thus making developers lives easier as they are less
worried about the ‘nitty gritty’ of hardware handling.

1.1.2.2 Resource Manager

The part of the operating system which behaves as a resource manager deals with sharing the re-
sources between the many different processes which are happening simultaneously. The OS arbitrates
between the requests these processes make to make to I/O subsystems, memory, etc to ensure smooth
functioning of the system.

1.2 Software Types
There are two key types of software - systems software and applications software.

1.2.1 System Software

Systems software is the software that controls the computer system and ultimately allows you to use
the computer. This includes the operating system and utility programs. They allow tasks to be
performed such as:

• enabling the boot process

• launching applications

• transferring files

• controlling hardware configuration

• managing files on the hard drive

• and protecting the machine from unauthorised use.

1.2.2 Application Software

Application software is software which allows the user to perform a specific task on the computer.
They allow tasks to be performed such as:

• Word processing

• Playing games

• browsing the web

• listening to music

compiled at
2024-01-05 16:03:11Z

4 of 70 Thomas Boxall

M30233 (OSINT) PAGE 1. INTRODUCTION

1.3 Central Processing Unit

The Central Processing Unit (or CPU for short), is the heart of the computer. It is sometimes also
referred to as the processor, microprocessor or processing unit. The CPU’s primary purpose is to
interpret processes and execute instructions.

1.3.1 CPU Organisation

Modern CPUs are complex, containing many different components. All CPUs will contain a: control
unit, Arithmetic Logic Unit, cache memory, and memory management unit. The inner workings of
the CPU will be discussed futher in a later lecture.

The CPU processes a sequence of machine instructions. A single instruction might perform simple
arithmetic on data values - typically individual words; or more data between memory and / or registers.

1.3.2 Registers

Registers are very fast storage built into the CPU. They are typically big enough to store one word
of data. Nowerdays, this will usually be 64-bits however in the past, 32-bit words were common.
Registers are small amounts of high-speed memory contained within the CPU which are used by the
processor to store small amounts of data that is needed during processing. This could include: the
address of the next instruction to be executed or the current instruction being decoded.

A CPU has many registers as they are commonly single purpose; they also play a key role in OS design
because they form part of state of a computation. Most computer architecture provides a small set of
General Purpose Registers (GPR). The program status word register is responsible for setting which
mode the CPU is operating in.

Name Use Description

EAX Accumulator The default register for many additions
and multiple instructions.

EBX Base Stores the base address during memory
addressing.

EXC Count The default counter for repeat (REP)
prefix instructions and LOOP instruc-
tions.

EDX Data Used for multiple and divide operations

ESI Source Index Store source index

EDI Destination Index Stores destination index

EBP Base Pointer Mainly helps in referencing the parame-
ter variables passed to a subroutine

ESP Stack Pointer Provides the offset value within the
program stack.

Table 1.1: GPR Registers and their purposes

compiled at
2024-01-05 16:03:11Z

5 of 70 Thomas Boxall

M30233 (OSINT) PAGE 1. INTRODUCTION

1.4 Classification of Programming Languages
Higher level languages cannot interact directly with the hardware. High level language source code
is translated into a series of low level languages - ultimately ending up with machine code that can
interface with the hardware directly.

1.4.1 Assembly Language

Assembly Language is a symbolic form of machine code used by system programmers. It will generally
have the same instructions as machine code but rather than the instructions being represented in
binary or hexadecimal format - assembly language uses mnemonics, making it easier to read, write
and understand the code.

The following two lines of code copy the contents of the EAX register to the EBX register then increases
the value in the EXB register by 4. In a high level language, this would look something like: b = a + 4.

MOV EBX, EAX
ADD EBX, 4

The Intel assembler instruction set also includes the ability to access the content within a memory
address. This is done by putting square brackets ([]) around the register containing the memory
address to look in.

MOV ESI, 105672
MOV EAX, [ESI]

An I/O device, like a hard disk, will have an associated set of ports through which the device is
controlled and data transferred. A range of ports will be associated with each device. The instruction
IN and OUT are used to read or write to ports.

1.5 User and Kernel Modes
Typical CPUs support different modes of operation controlled by a register called the Program Status
Word (recent X86 processors actually use bit 0 of the Control Register (CR0), when its set - we are
in User Mode or Protected Mode).

When machine code executes while the CPU is in user mode, it can only use limited instructions, for
example not the IN and OUT instructions.

When machine code executes while the CPU is in kernel mode, it can use privileged instructions - for
example IN and OUT.

The Operating System will always run in Kernel Mode. Thus, enabling all I/O operations to be
performed by the OS on behalf of application programs. This has multiple benefits: the OS keeps
control over whats done with those I/O operations and it makes it easier for software developers as
they don’t have to worry about interfacing directly with hardware.

1.6 Interrupts

When an I/O controller (i.e. on a disk card) has requested data available, it must gain the attention
of the CPU. This is because the CPU can’t be focusing on just waiting for the disk as it has other
processes it needs to service. Gaining attention of the CPU is done through asserting an electri-
cal signal called an interrupt. When the CPU receives an interrupt - it must abandon the program
its currently executing and instead execute specialised code to deal with the new event. Specialised

compiled at
2024-01-05 16:03:11Z

6 of 70 Thomas Boxall

M30233 (OSINT) PAGE 1. INTRODUCTION

code takes form of interrupt handlers which are typically installed at boot time and run in kernel mode.

Interrupt handlers have a wide significance in operating systems - beyond their original role in pro-
cessing data received from I/O controllers. They have a role in process scheduling and in the imple-
mentation of system calls - these two topics will be covered in later lectures. Inn some sense, the whole
operating system is driven by variations on the theme of “interrupt handler”.

compiled at
2024-01-05 16:03:11Z

7 of 70 Thomas Boxall

M30233 (OSINT) PAGE 2. CONCURRENCY

Page 2

Lecture - Concurrency
� 2023-10-03 � 13:00 � Tamer

2.1 What is Concurrency
Concurrency: many things can be run at the same time.

In Computer Science, a concurrent system is a system where two or more computations are executing
(literally of effectively) at the same time. This is different to a sequential system, however, as this is
where a computation (or parts of a computation) are executed to completion, one after the other. A
concurrent system is almost the same as a parallel system, where multiple computations are literally
proceeding at the same time.

Concurrency is used in many different systems, including

• Multi-tasking operating systems, where many processes are runing at once;

• Individual applications like web servers that must be processing many “requests” at the same
time;

• Multicore processors where a single application is running across more than one core;

• Parallel computers in general;

• Distributed systems in general

When discussing concurrency in operating systems, we are meaning it as multiple threads sharing the
same core of the CPU by multitasking. However, in some cases where the CPU has more than one
core, threads may be able to run on different cores truly in parallel.

2.2 Processes and Threads
A thread or thread of control is a specific sequence of instructions, which have been defined by a pro-
gram or by a section of a program. Instruction sequences from one thread may run in parallel with,
or be interleaved in an unpredictable way with, sequences from other threads.

Processes have one or more threads within them. A process will also have aomse additional structure
associated with them, for example - address space. Every process has at least one control flow (thread),
and may have many control flows. All control flows in the same process share the same address space.

2.3 Programming with Threads
Historically, programming languages may have come with special “parallel” constructs which can be
used to write concurrent programs. Nowerdays, its more common to use thread libraries.

compiled at
2024-01-05 16:03:11Z

8 of 70 Thomas Boxall

M30233 (OSINT) PAGE 2. CONCURRENCY

2.3.1 Occam Example

Occam, a programming language popular in the UK in the 1980s and 1990s, could be used to write
parallel code with the PAR instruction where the subsequent SEQ instructions would be used define
the blocks of code to run in sequence. Note that occam didn’t have a print command however that
phrase has been used for simplicity.

PAR
SEQ

x = 23
print x

SEQ
y = 42
print y

2.3.2 POSIX

POSIX (Portable Operating System Interface) is a low level library for thread programming, often
for the C programming language - which is use in the implementation of the OS as it has good direct
control over the hardware. Using POSIX, the code for a new thread is defined in a C function, where
a parent thread (generally the main programme) calls the library function pthread_create, passing
it a pointer to a function with the code for a new thread. A parent thread may create any number
of threads, and children can create their own children etc. The following example shows creating and
running a thread using POSIX in C, again there has been some simplifications to the syntax.

int main(int argc, char* argv[]){
pthread_t thread;
pthreasd_create(&thread, NULL, run, NULL);
x = 23;
print x;

}
void* run(void *){

y = 42;
print y;

}

2.3.3 Java

Threads in Java aren’t as parallel-esque as occam or library-esque as C. Java doesn’t contain explicit
parallel constructs, but many features of the language have been carefully designed to support concur-
rency. Modifiers can be used on declarations and there are special constructs which all are carefully
integrated into the Java Memory Model.

Thread creation in Java is similar to POSIX except it follows the object-oriented paradigm that Java
uses. Threads can be defined in a class which extends java.lang.Thread in a function called run. To
run the thread, create an object of the new class then call the start method on that object to being
the thread.

public static void main(String[] args) {
MyThread thread = new MyThread();
thread.start();
int x = 23;
System.out.println (x);
thread.join();

}
Public static class MyThread extends Thread {

compiled at
2024-01-05 16:03:11Z

9 of 70 Thomas Boxall

M30233 (OSINT) PAGE 2. CONCURRENCY

public void run() {
int y = 42;
System.out.println (y);

}
}

The join method used in the main function is option. It waits until the child thread has completed
before allowing execution of the main program to continue - hence synchronising between threads.
POSIX has an equivalent function called pthread_join.

2.4 Non-Determinism
Non-Determinism is the idea that when we have multiple threads executing at exactly the same time,
we don’t know which will finish executing first. Therefore if these multiple threads all use the same
variable then when the same code is run many times, it may result in different final values of that
variable.

The number of possible orderings for a program with multiple threads to execute in grows exponen-
tially with program size, this makes concurrent programs hard to design and debug because there are
many possibilities to consider.

The following example, while a simple program, illustrates precisely why non-determinism is a bad
thing. In the example there are two threads executing A and B. They are both performing operations
on a shared variable c.

Code Thread c x y Note

0 - - initial

x = c A 0 0 -

c = x + 1 A 1 0 -

y = c B 1 0 1

c = y + 1 B 2 0 1 final

Table 2.1: Example of non-determinism: trace 1

Code Thread c x y Note

0 - - initial

x = c A 0 0 -

y = c B 0 0 0

c = x + 1 A 1 0 0

c = y + 1 B 1 0 0 final

Table 2.2: Example of non-determinism: trace 2

compiled at
2024-01-05 16:03:11Z

10 of 70 Thomas Boxall

M30233 (OSINT) PAGE 2. CONCURRENCY

2.5 Interference
Interference is a more serious case of non-determinism. It would have been reasonable to expect that
each thread increments the value of the variable c by 1 in the above example; therefore ending with
c containing the value 2. This kind of unpredictable behaviour, when concurrent threads adversely
affect one anothers behaviours, is called interference. Similar, more serious, problems arise with shared
access to more complex data structures.

2.5.1 Race Conditions

Interference situations may also be referred to as race conditions. This is because the outcome depends
on which thread gets to a particular point of its programme first. In this module, race conditions and
interference are essentially the same thing - even though race conditions also occur in distributed
systems, without shared variables.

2.5.2 Avoiding Interference

There are a number of different ways to avoid interference in concurrent programs.

The simplest of these is to ensure that threads never have variables in common, which is essentially
what happens with processes (whereby each process has a completely independent address space with
no shared variables). However, in the underlying operating system, which is responsible for scheduling
processes this solution is too restrictive.

Another solution is to make use of something called a critical section, this is where sections of the
program that cannot happen at the same time are isolated from each other and a method is used to
ensure they cannot update shared data structures at the same time. The methods used are called
Mutual Exclusions which are a concept (so you can’t eat or touch it) and will be covered further in
the next lecture.

compiled at
2024-01-05 16:03:11Z

11 of 70 Thomas Boxall

M30233 (OSINT) PAGE 3. MUTUAL EXCLUSION

Page 3

Lecture - Mutual Exclusion
� 2023-10-10 � 13:00 �

NB: this lecture was split over 2 weeks, it continued on 2023-10-17.

3.1 Introduction to Mutual Exclusion

Mutual Exclusion (MutEx) is a technique to ensure that critical sections do not overlap during exe-
cution of a concurrent program. This is another example of synchronisation between threads (like the
join instruction we saw in Java last week). MutEx can be used to guarantee that critical sections
execute atomically, this means the sections of code can execute as a whole without interruption -
therefore no other threads can interfere with its execution.

Race conditions, where we do nothing to prevent two critical sections executing at the same time, are
very bad. This is due to the nature of a race condition where the exact outcome of the critical section
is always an unknown. Despite the fact that the program could be tested 100 times and never exhibit
the race condition - it may begin randomly to do so, especially once it’s pushed to production. To
avoid race conditions, we have to protect the critical section within a Mutual Exclusion - there are a
number of different techniques which can be used to do this.

3.2 Mutual Exclusion: Using Shared Variables
There are a number of MutEx techniques which make use of shared variables to control the program
flow through the critical section.

3.2.1 Method 1: lock

In this method, we consider two threads only. Lock makes use of a new shared boolean variable lock,
which gets initialised to false, that specifies whether one thread is in its critical section. An example
of this is shown below.

repeat
while(lock) do nothing //means we wait unitl lock=false
lock = true; // lock has gone false meaning we can lock ourself and use it
<<critical section>>
lock = false; // indicate we've finished in our critical section
<<do normal work>>

forever

When the first thread is ready to enter its critical section, its wait loop terminates immediately, lock
gets set to true and the critical section starts to execute. If a second thread wants to enter its critical
section, it will see that lock is set to true and its wait loop iterates until the first thread leaves its
critical section and sets lock back to false.

compiled at
2024-01-05 16:03:11Z

12 of 70 Thomas Boxall

M30233 (OSINT) PAGE 3. MUTUAL EXCLUSION

There is a problem with this algorithm - if the second thread tests lock between the while loop finish-
ing in the first thread and that thread setting lock to true, the second thread will also see a false
value for lock and can therefore enter its critical section. This solution does not guarantee safety.

What has happened with this attempt to remove a race condition has added another race condition!

3.2.2 Method 2: turn

This method, again, only works for 2 threads. It makes uses of a new shared variable turn which
specifies whose turn it is to enter the critical section next (so not the current thread in the CS).

repeat
while (turn !=0) do nothing;
<<critical section>>
turn = 1;
<<do normal work>>

forever;

In the above example, 0 represents the thread shown above and 1 represents the other thread. The
exam may use i and j.

Turn works by allowing the first thread (0) to execute its critical section first. If the other thread
(1) tries to enter it’s own critical section before 0 has finished then it waits in a loop, doing nothing.
When 0 leaves the critical section, turn is set to 1. This now means 1 must be the next thread to
enter a critical section.

This solution does establish mutual exclusion as both threads cannot be in their critical section at
the same time. However it enforces a strict 0 1 0 1 0 1... ordering of access to the shared data
structure. This could lead to a scenario where it may be thread 1s turn to enter the critical section
but thread 1 has other work to do indefinitely - leading to a situation where thread 1 may be blocked
forever. This solution guarantees safety but not progress.

3.2.3 Method 3: interested

This method, shown below, works with two shared Boolean variables: interested[0] and interested[1].
When either variable is set to true, it means that the thread who owns that variable wants to enter
its critical section.

repeat
interested[0] = true;
while interested[1] do nothing;
<<critical section>>
interested[1] = false;
<<do normal work>>

forever;

Both variables are initialised to false at the start of the algorithm. A thread sets its interested
variable when it wants to enter the critical region. If the other thread has already set its own inter-
ested variable, it then waits in a loop until that thread has finished with the critical section. When a
thread leaves its critical section - its interested variable is unset so the other threads can have access.

This solution does establish mutual exclusion. However, if both threads reach their intereested[0] = true;
line immediately after one another and before the other tests whether or not to loop - the threads now
loop (block) forever and the program doesn’t progress. This solution guarantees safety, but not
progress.

compiled at
2024-01-05 16:03:11Z

13 of 70 Thomas Boxall

M30233 (OSINT) PAGE 3. MUTUAL EXCLUSION

3.2.4 Method 4: Peterson’s Algorithm

Peterson’s Algorithm combines the last two attempts (interested and turn). It works yielding turn to
the other thread before entering it, rather than switching turns after exiting the critical section.

repeat
interested[0] = true;
turn = 1;
while(interested[1] and turn=1) do nothing; //waiting
<<critical section>>
interested[0] = false;
<<do normal work>>

forever;

This algorithm works, with the only issue being seeing why it works.

If thread 0 tries to enter its critical section while 1 is already in its critical section - interested[i]will
be true. 0 sets turn=1 so 0 waits until 1 unsets its interested flag. In general, if 0 reaches the wait
loop while 1 is “interested”, the first thread to set turn to the other thread’s identity gets to actually
execute its critical section first.

3.3 Practical Approaches to Mutual Exclusion
Whilst Peterson’s Algorithm is enlightening, it is not particularly useful in practice - there is no easy
way to add extra threads to it and it relies on busy waiting (where threads wait by looping) which can
be very wasteful of CPU cycles. The more realistic solutions are based on the type of the operating
system: parallel systems make use of specialised atomic instructions and multitasking systems make
use of synchronisation into thread or process scheduling algorithms.

3.3.1 Method 1: Hardware Support (Test and Set)

One kind of atomic instruction sometimes provided by hardware is a Test and Set Lock (TSL). It
works by testing and modifying the content of a word atomically and may behave like

Boolean TestAndSet (Boolean lock){
Boolean initial = lock;
lock = true;
return initial;

}

We can then simplify the process of writing a thread as follows. lock = false initially.

repeat
while (TestAndSet(lock)) do nothing;
<<critical section>>
lock = false;
<<do normal work>>

forever;

Parallel computers can use TSL and other similar instructions to implement mutual exclusion and
other kinds of synchronisation. However, they still depend on busy waiting, which is not appropriate
in multi-tasking environments because it wastes computer cycles. There is a need for higher-level
abstractions for synchronisation that can be implemented either by low-level instructions like TSL, or
by the Operating System’s scheduling algorithms.

compiled at
2024-01-05 16:03:11Z

14 of 70 Thomas Boxall

M30233 (OSINT) PAGE 3. MUTUAL EXCLUSION

3.3.2 Method 2: Operating System Support (Semaphores)

A semaphore, often called S is an integer variable that can be accessed using only one of two operations
- V(S) and P(S). This works by V(S) increasing the value of S by 1; and P(S) decreases the value of S
by 1. The value of a semaphore can never go below 0 and this is where the basics of how a semaphore
works comes from.

Semaphores work by the thread which wishes to enter it’s critical section checks to see if it can reduce
the value of the semaphore by 1. If the value, when decreased is 0, then the semaphore is ‘lowered’
and the thread enters its critical section. If when the semaphore is tried to be lowered, the value is less
than 0, then it is assumed that another thread is in it’s critical section and therefore the requesting
thread must wait until it’s turn. At the end of the thread’s critical section - it raises the semaphore
again indicating another thread can enter it’s critical section.

repeat
P(S);
<<critical section>>
V(S);
<<do normal work>>

forever;

Semaphores can be implemented efficiently in multiprocessor or in multi-tasking operating systems.
Programming with semaphores is error prone.

3.3.3 Method 3: Java Synchronised Methods

Java and other modern programming languages implement a version of the monitor concept. This
is implemented in Java with methods having the ability to be declared as to be synchronised using
the synchronized keyword. The language then handles the instance where two threads try to call
the synchronised methods at the same time, blocking one of them until the other has completed. A
synchronised method in Java is declared as follows:

class MyClass {
synchronized void mySynchronizedMethod(){

<<critical section>>
}

…
}

compiled at
2024-01-05 16:03:11Z

15 of 70 Thomas Boxall

M30233 (OSINT) PAGE 4. SYNCHRONISATION & DEADLOCK

Page 4

Lecture - Synchronisation & Deadlock
� 2023-10-17 � 13:00 � Tamer

4.1 Synchronisation
Beyond Mutual Exclusion, there are other kinds of synchronisation. Join Synchronisation is used
between parent and child where the join operation in the parent can only complete when the child
thread terminates. Barrier Synchronisation takes effect across a group of N processes and it works as
such that no single thread can progress until all threads have reached their barrier operation. The
final type of synchronisation is where thread i sends a message to thread j; this delays j’s progression
as naturally thread j can’t receive the message until thread i has sent it.

Generally, synchronisation consists in a particular thread having to wait until some condition is created
by one or more threads. The Semaphores which we used last week are a general mechanism used to
achieve synchronisation.

4.2 Resource Deadlock

4.2.1 Resources

Computer Systems have many kinds of resource. A single resource can be accessed by either a single
process or single thready at a time. An example of this would be a shared data structure in the
operation system (where we use MutEx to manage access to it for different threads) or a physical
device such as a printer.

4.2.2 Deadlock

Resource Deadlock can occur when processes (or threads) need to acquire access to more than one
exclusive resource. For example, a program might need to use the scanner and printer therefore it
would require exclusive access of both of these resources.

The classic example of this is when you have two threads A and B, and two shared resources P and
S. In this example A already has exclusive access to P and B already has access to S. However, A also
needs access to S and B also needs access to P. This has caused a deadlock as both threads are waiting
on access to a resource which is currently in use while neither realise they are in deadlock.

4.2.3 What is Deadlock?

Deadlock is a situation where a process or a set of processes wait indefinitely for an event that can
never occur.

compiled at
2024-01-05 16:03:11Z

16 of 70 Thomas Boxall

M30233 (OSINT) PAGE 4. SYNCHRONISATION & DEADLOCK

In practice, a set of threads is in a resource deadlock state when every thread in the set is waiting on
a resource which is being held by another thread in the set.

Resource deadlock can be modelled using a Resource Allocation Graph, which shows the processes are
requesting which resources and which resources have been granted to which processes.

4.2.4 Resource Allocation Graph

Figure 4.1: Three resource allocation graphs

The above figure shows three different examples of the a resource allocation graph (RAG). In RAGs,
a circle indicates a process and a square indicates a resource which can be used by the processes. The
arrows between the processes and resources are important, as an arrow pointing from a process to
a resource indicates that the process is waiting for that resource to become available and an arrow
pointing from a resource to a process indicates that the process is holding that resource.

In the above example, resource R is assigned to process A; process B is waiting for resource S; and
processes C & D are in deadlock over resources T and U.

In a RAG, anytime there is a loop (or cycle), deadlock has occurred.

4.3 Dealing with Deadlock
One method used to deal with Deadlock is called deadlock detection and recovery. In this method, you
allow the system to enter the deadlock state then run detection algorithms periodically to check if the
system has entered deadlock or not; if deadlock is detected, it performs a recovery scheme to get out
of the deadlock. To detect the deadlock, it searches for cycles in the Resource Allocation Graph.

4.3.1 Deadlock Recovery

The most efficient way to recover from a deadlock is to kill processes until the deadlock cycle is elim-
inated. This then means that the surviving processes get access to the resources and that they can
continue; the killed processes must attempt to access the resources again which hopefully won’t result
in a deadlock this time!

This process of killing off processed when deadlock occurs is commonly used in Relational Database
Management Systems where multiple transactions attempting to gain access to the same record causes
a deadlock. The changes made can be “rolled back” which means the clients accessing the RDBMS
can try again.

compiled at
2024-01-05 16:03:11Z

17 of 70 Thomas Boxall

M30233 (OSINT) PAGE 4. SYNCHRONISATION & DEADLOCK

4.3.2 Deadlock Avoidance

When designing systems and writing code, it is much better to keep the system safe which means to
avoid entering unsafe states which may turn into a deadlock later.

Modern devices come with built in deadlock avoidance mechanisms - these delay acquisition of any
resource if acquiring it would allow the system into an unsafe region.

Dijkstra’s Banker’s Algorithm can be used to avoid deadlocks. This works by requiring all processes
to declare the maximum number of resource units that they may request. It then keeps track of the
current allocation for each process and their currents needs. When it receives a request, it pretends
to honour the request and tries to fulfill the needs of all the other processes in some order so it can
check what state will occur (safe or unsafe) if it grants the request - if it leads to a safe state then the
request is granted and if not, then the request is denied.

compiled at
2024-01-05 16:03:11Z

18 of 70 Thomas Boxall

M30233 (OSINT) PAGE 5. PROCESSES AND SCHEDULING

Page 5

Lecture - Processes and Scheduling
� 2023-10-31 � 13:00 � Tamer

5.1 Processes

A process is a program which is in execution. Processes can either be visible (where the user can
see them) or invisible (where they are running in the background) - Task Manager shows both types.
Each application which is running in a different window will be running a different process, however,
a process is not a program.

A program is a passive entity - a sequence of instructions. A process is an active entity - it is doing
things, through which it is executing part of the program. Multiple instances of the same application
may be running concurrently, each in a distinct process. Processes contain their execution states
within them as well as the individual threads which make up the processes.

5.1.1 Memory layout Of a Process

The memory layout of a process is typically divided into multiple sections, including

Text Section the executable code

Data Section global and static variables

Heap memory that is dynamically allocated during program run time

Stack temporary data storage when invoking functions (such as parameters, return addresses and
local variables)

The heap and stack can grow and shrink in size within a limited range as all processes have a fixed
maximum size.

5.1.2 What Makes a Process?

The execution state of a process includes a program counter (which is the point reached in the pro-
gram), a stack and a data section. A thread also has these features, however it inherits the data
section from the process it belongs to. Alongside threads, processes also contain an address space.

5.2 Multitasking
A major responsibility of the operating system is sharing the physical CPU resource between processes,
which is achieved through time sharing. This is when the CPU is allocated in turn to active processes.
Context Switching is the process of storing the state of a process and switching the CPU to another
process - this happens frequently enough that processes appear to run concurrently. The maximum
quantum (amount) of time a process runs for before switching might be around 10ms, however this

compiled at
2024-01-05 16:03:11Z

19 of 70 Thomas Boxall

M30233 (OSINT) PAGE 5. PROCESSES AND SCHEDULING

depends on the OS’s scheduling policy.

While one process is waiting for an Input / Output (I/O) event, the CPU can be reallocated to
another process that has work to do. This improves utilization of the CPU, as this is a limited
resource which we need to make the best use of. As well as waiting on an I/O event, the OS can
context switch between processes because the current process has been executing on the CPU for the
allotted quantum therefor eit needs to give another process a go.

5.2.1 Process States

There are a number of different states a process may be in:

new the process is being created

ready the process is waiting to be assigned to a processor

running instructions are executing

blocked / waiting the process is waiting for some event to occur (such as an I/O completion or
reception of a signal)

terminated the process has finished execution

Figure 5.1: Process states and how processes move between them

The transitions between these processes can be driven by a number of things. Transitioning from
blocked to ready is typically driven from an interrupt from an I/O device. Transitioning from
running to ready is commonly driven by interrupts by the system clock. The transition from running
to blocked commonly has a special kind of interrupt (“trap”). All the interrupts are dealt with by
interrupt handlers which are installed and managed by the OS.

The operating system maintains a data structure (process table) in memory with a slot for every
running process. The slot for each process is called a Process Control Block.

5.2.2 Process Control Block

A Process Control Block (PCB) is a data structure used by the operating system to store information
about processes. For processes not presently in the running state, a PCB will include: the contents
of all machine registers (general purpose registers, program counter, program status word, etc) at the
time the process was interrupted; pointers to data structures associated with memory management for
the process (this will be covered in more detail in a later lecture); and any other information needed
to restore the process in exactly the state it was in when it was last running.

The PCB does not contain program variables, these are assumed still in the processes’ memory.

The PCB is used to store the state of the CPU when the CPU context switches to a different process.

compiled at
2024-01-05 16:03:11Z

20 of 70 Thomas Boxall

M30233 (OSINT) PAGE 5. PROCESSES AND SCHEDULING

5.2.3 Dispatcher

The dispatcher, part of the operating system, gives control of the CPU to the process selected by the
scheduler. This has a number of steps:

1. Stop the currently running process

2. Store the hardware registers and any other information in that processes’ PCB

3. Load the hardware registers with the values stored in the selected process’ PCB and restores
any other state information

4. Switch to user mode

5. Jump to the proper location in the user program to restart that program

The above steps are collectively known as Context Switching.

5.3 Scheduling
Scheduling is what the CPU & Operating System do to control what process currently has access
to the CPU and what order the remaining processes should get access. The thing that controls this
is called the scheduler. Before a process is selected to run next on the CPU, the scheduler needs to
address the following questions:

• When should the CPU be given to another process?

• What scheduling policy is being used? (Under what circumstances should the CPU be given to
another process?)

• What scheduling mechanism is being used? (How long and in what order should the CPU be
given to another process?)

The above mentioned questions will all be answered by the scheduling algorithm.

When a process is ready to run - it conceptually is part of the ready queue. The scheduler assumes
all processes are in memory and it will select a process from the ready queue and allocate the CPU
to it. The ready queue is usually implemented using a linked list, comprising of pointers to process
control blocks. It may be ordered by priority, however this is optional. Each Input / Output device
also has their own queues - these differ from ready queues as this is where the process is put while it
is blocked waiting on I/O. There are also many process queues associated with semaphores etc.

5.4 System Calls

The user programs (applications) run in processes. The scheduler and other parts of the operating
system will run in their own time slices, which are sandwiched between the time slices of user processes.
While a user process is actively executing on the CPU - the CPU is in user mode (it has a limited
set of instructions which can be used); and when the Operating System is directly executing on the
CPU - the CPU is in kernel mode (any instruction can be performed without question). This means
that there needs to be a mechanism for a user program to request that a kernel mode instruction is
performed. This mechanism is called a system call.

To software developers - system calls look like ordinary function calls, however rather than performing
an action in the software - they invoke an Operating System function such as creating new processes
or performing input & output. In UNIX and OSs derived from it, there are only a few dozen system
calls. These are standardised in POSIX - in a sense, the system calls define the OS. However, in true

compiled at
2024-01-05 16:03:11Z

21 of 70 Thomas Boxall

M30233 (OSINT) PAGE 5. PROCESSES AND SCHEDULING

Microsoft fashion - Windows has may more.

It’s all well and good the CPU being able to call these kernel mode instructions while in user mode
however this somewhat defeats the point. Instead, the function call made by user programs can’t
directly change the processor to kernel mode - rather a software interrupt (trap) is raised. This is
handled similarly to a hardware interrupt. The trap is a mechanism of transition. Once a system
call is made, its handler may call into a device driver that talks to some I/O device or when a data
transfer completes - a hardware interrupt goes through another entry in the interrupt table and even-
tually the user process is rescheduled. The Operating System initially populates the interrupt table
with suitable kernel mode handler functions. This is done by the LIDT instruction on Pentium systems.

In a sense, the operating systems interrupt handlers run the whole kernel. Any switch to kernel mode
that triggers kernel OS activity starts with an interrupt of one form or another, which is followed by
a jump to a table belonging to an interrupt handler. All phases of process scheduling are handled by
interrupts.

compiled at
2024-01-05 16:03:11Z

22 of 70 Thomas Boxall

M30233 (OSINT) PAGE 6. INTER-PROCESS COMMUNICATION

Page 6

Lecture - Inter-Process Communication
� 2023-11-07 � 13:00 � Tamer

Inter-Process Communication (IPC) is a fundamental feature of an operating system as it allows pro-
cesses, who are otherwise fully isolated from each other, to communicate and share data. We have
already seen how multiple threads in the same process communicate through methods such as shared
variables and semaphores.

The ability to share information between processes is a significant advantage, as well as speeding up
computation through being able to process in parallel; and increasing the modularity of code. In both
single and multiple system IPC - the operating system does the hard work of transmitting the data
between the processes, enabling processes to use simple APIs to communicate with one-another.

An Application programming Interface (API) is the generic name for an interface to some library of
software functions. It is a connection between computers or between computer programs to allow
communications.

6.1 Traditional Inter-Process Communication

6.1.1 Pipes

The Pipes and Socket mechanism is stream oriented. The processes communicate in a continuous
stream of bytes sent over persistent connections between the two processes. It is one of the simplest
form of IPC and is still used today in UNIX derived systems (e.g. Linux). A UNIX pipe will have an
input and output. A stream of bytes is written to the output; which is read from the input by the
other process. There inputting process will block if there is no data currently in the pipe. Typically,
a pipe is created by parent processes which is then used to communicate between child processes,
typically only two child processes.

Pipes are single-directional. This means that for two processes to be able to communicate both ways,
two pipes will need to be setup. One will need to be such that a process writes to it’s output and the
other setup such that it an read from it’s input.

Pipes are written to and read from like a file, but more efficient. The kernel buffers the data.

6.1.2 Shared Files

Using shared files means that multiple processes can access the same file. This requires file or record
locking to allow cooperating processes to share a resource safely. A file lock will lock the entirety of a
file and a record lock will just lock a portion of the file.

6.1.3 System V

System V was a dialect of UNIX developed in the 1980s. Many features have been adopted into POSIX
(Portable Operating System Interface) standards and are still available today in Linux etc. it incor-

compiled at
2024-01-05 16:03:11Z

23 of 70 Thomas Boxall

M30233 (OSINT) PAGE 6. INTER-PROCESS COMMUNICATION

porated APIs for single-system IPC supporting for example: Shared memory segments, Semaphores,
Message Queues.

6.1.4 Shared Memory

Processes have their own, private memory address space which they generally don’t share with other
processes (in contrast to threads). Whilst this is the general rules, system calls can be used to create
memory areas that can be accessed by multiple processes.

On modern UNIX-derived systems, it is common to implement shared memory segments by using the
virtual memory system explicitly. This is where a process can explicitly map a specified file into their
memory space using the POSIX function mmap. When two or more processes map the same file it will
create, what behaves like, a shared memory region. However, as we now have shared memory - we
have all the complications which go along with that. POSIX and System V provide semaphores that
can be accessed from multiple processes.

6.2 Inter-Process Communication Across Computers

6.2.1 Message Passing

In Message Passing - processes interact by sending and receiving messages. These messages are iso-
lated data chunks or a specified size rather than unstructured streams of bytes as we saw in pipes.
We sometimes say that message passing is connectionless.

As with pipes, the problems that arise from multiple processes accessing the same shared data are
avoided. This means that the message passing model works for communication between processes on
different computers.

The number of messages that get buffered temporarily during communications is one which has a
number of solutions:

Zero-Capaity queues 0 messages. The sender will always wait for the receiver (this synchronisation
is called rendezvous)

Bounded capacity queues finite length of n messages. The sender waits if link buffer is full (e.g.
MPI)

Unbounded capacity queues infinite queue length. The sender never waits.

Within Java, the Java Message Service (JMS) API provides message passing which has been imple-
mented by various projects and vendors: Oracle Java System Message Queue; BEA Weblogic; IBM
WebSphere. For parallel computing, the Message Passing Interface (MPI) which is implemented by
open source projects and hardware vendors.

6.2.2 Sockets

Sockets provide a programming model with some features of message passing. However they are most
commonly used for stream-like communication. This makes them similar to pipes, except unlike pipes
- sockets can connect to unrelated processes, including processes on different computers.

Sockets make use of the Berkely Sockets API which has been implemented by system calls in Linux
and Windows. After initialising a connection on a socket by using socket(), bind() and listen(),
the server will wait for connections on the specified port by calling accept(). The client device calls
connect(), passing in a local socket and the address of the server socket (the IP address plus port
number). If the connection succeeds, a new socket is returned by accept() and the client and server
can then exchange byte arrays of data over the socket pair using send() and receive() calls.

compiled at
2024-01-05 16:03:11Z

24 of 70 Thomas Boxall

M30233 (OSINT) PAGE 6. INTER-PROCESS COMMUNICATION

6.2.3 Remote Procedure Calls

Remote Procedure Calls (RPC) was suggested by Birell and Nelson in 1984. It aimed to access-
transparent call semantics while keeping remote calls as similar looking to local procedure calls as
possible (this, obviously, requires calls to be converted into network calls before they can be made
properly). The server exports modules of procedures, which the client is then able to call.

Not only does RPC extend the conventional procedure call to incorporate the client / server model,
it enables remote procedures to accept arguments and return results. It also makes it easy to design
and understand programs while helping to the programmer to focus on the application rather than
the communications protocols. It allows a client to execute procedures on other computers while
simplifying the task of writing client / server programs.

The RPC forms the foundation for many distributed utilities used today, like Network File System
(NFS) and Network Information Service (NIS) in UNIX derived systems.

There are two issues with RPC however: transparency where the RCP calls should have the same
syntax as and should have identical syntax to local procedure calls; and standard representation where
external data representation (XDR) is required for all data types - due to the fact that one machine
may be little-endian and the other may be big-endian or the two machines may use different character
encoding or that the representation of floating point numbers between the two machines may be
different.

compiled at
2024-01-05 16:03:11Z

25 of 70 Thomas Boxall

M30233 (OSINT) PAGE 7. FILE SYSTEMS

Page 7

Lecture - File Systems
� 2023-11-21 � 14:00 � Tamer

7.1 Files
A file is a named unit of storage that exists persistently from the moment it is created to the moment it
is destroyed. The name file is an abstraction of how this works to make it simpler for users. Generally,
file contents can be written, read or updated. File size varies over the lifespan of the file as the content
in it is changed.

Files are manipulated by a set of primitive operations which are usually implemented as Operating
System system calls. A number of primitive operations are shown below:

Create Write various data describing the new file to disk. Usually, when created - the file is empty.

Delete Logically, delete content and all data describing the file from disk. Physically, the data may
remain intact.

Open Fetch data describing the file from disk to memory, prior to reading or writing.

Close Purge any data describing the file from memory

Read Read some bytes of data (usually from the current position in the file). Directly after opening
the file - the current position is the start of file; by reading the file, current position will be
incremented.

Write Write some bytes of data (starting writing at current position) to the file. If current position
is at the end of the file, enlarge the size of the file accordingly.

Seek Move the current position to a specified location in the file.

Get Attributes Get the various kinds of metadata associated with the file, such as last modification
date

Set Attributes Sets the various kinds of metadata associated with the file

Rename Changes the name of the file to a new value specified.

Current Position is a pointer which points to the current position in the file which is to be read,
written, or any other operation involving the contents of the file.

7.1.1 Metadata

Metadata is a set of data which provides information about other data. In terms of files, this is
provided as a series of file attributes (not part of the file content) such as:

Type The type of file. Needed for systems that support different file types

compiled at
2024-01-05 16:03:11Z

26 of 70 Thomas Boxall

M30233 (OSINT) PAGE 7. FILE SYSTEMS

Size Current file size.

Protection Controls who can do reading, writing and executing.

Time, Date, User Identification Data for protection, security and user monitoring.

Location Pointers to the file content location.

Exactly where this metadata is stored depends on the type of file system used.

7.2 Directories
A directory is a special type of file that contains a list of names of some other files, together with
references to those files. Entries in directories are references to ordinary files, or to other directories.
Referenced files or directories are considered to be contained in the directory. Directory entries are
considered child directories.

Directories are commonly structured as a tree (like a tree data structure where a node (directory) will
have multiple children (entries in the directory)).

The root directory is the highest level you can go in the directory tree. On UNIX derived operating
system, this is denoted by the character / and on Windows, it is denoted by the character \.

Neither files or directories contain absolute path names, not even for themselves. Everything is done
relative to the layer above.

7.3 Units of File

File Systems (see below, they get a section of their own), store file content in “units of storage”. On a
Hard Disk Drive (HDD), a unit may consist of several consecutive disk sectors. In UNIX derived file
systems, these units are usually called blocks and in Windows file systems, the units are usually called
Clusters. Whatever the units of storage is called - they are usually some multiple of the physical sector
size (for example, 1KB, 2KB, 4KB, etc). Each file is allocated a whole number of blocks to store its
content in.

7.4 File Systems
At the user level, file systems from different operating systems look quite similar. However, they are
quite different and each operating system will typically support multiple types of file system. Different
file systems are used according to: the characteristics of the storage device, which operating system
wrote the file, legacy file systems form earlier versions of the OS, etc.

7.4.1 File Allocation Table

File Allocation Table (FAT) was the file system used in MS-DOS (c.1980). Versions of FAT were the
primary file system used in Microsoft Windows up-to and including Windows ME1. From Windows
2000 onwards, NTFS was used. FAT is still widely used on small storage devices and is recognised by
pretty much all modern operating systems.

The layout of the FAT file system has three physical sections to it. The reserved area is used to store
data in the file system category, its size is defined in the boot sector. The FAT Area (second section)
contains the primary and backup FAT structures; its size is calculated based on the number and size
of FAT structures. The Data Area (third section) contains the clusters which will be allocated to store

1Millennium Edition

compiled at
2024-01-05 16:03:11Z

27 of 70 Thomas Boxall

M30233 (OSINT) PAGE 7. FILE SYSTEMS

file and directory content.

In FAT, a directory entry is only 32 bytes long and comprises of the file name, the file metadata and
the ID of the first cluster used to store that file only. Subsequent cluster ID’s would be obtained
from the File Allocation Table (yes, it does have the same name as the file system type, but they are
different things). The FAT is an implementation of a linked list allocation scheme where the links
are stored by themself in a dedicated area of the disk. There is one entry in the FAT table for every
cluster in the disk.

7.4.2 Ext Family

Extended File System (EXT) is used by various UNIX-derived operating systems including Linux. The
current default Linux file system is Ext4.

Within Ext, everything is considered to be a file, including physical devices such as DVD-ROMs, USB
devices and floppy drives. Allocation can follow an inode approach. Any block of inode can be in
allocated or unallocated space. An inode (or “I-node”, or even “index node”) refers to a single file or
directory in the system. The inode is a small data structure containing the file / directories metadata
plus block pointers for the contents of the file. Within the implementation of hte file system the inode
number is the principle means of referring to a file or directory.

In Ext, a directory is a file and therefore has its own inode. This inode references the block holding
the content of the directory. In the case of a directory, the content follows a strict format - it contains
a list of names and inode numbers for the files ‘in’ the directory and nothing else.

7.4.3 NTFS

New Technology File System (NTFS) as introduced by Microsoft for Windows NT2 and successors.
This includes XP, Vista, 7, 8, 10 and 11. NTFS is much more complex than FAT, as it natively
supports long, Unicode file names, security descriptors, encryption, journalling, etc.

A NTFS file has an associated set of attributes, and value of each attribute ia a sequence (or stream)
of bytes. Most notably, the value of the $DATA attribute holds what we would have previously have
considered the content of the file.

The primary storage of metadata in NTFS is in the Master File Table (MFT). It contains at least
one entry (file record) describing every file and directory. The MFT is similar in certain respects to
UNIX’s inodes. Every entry (record) in the MFT has a fixed size. This is configurable in the boot
sector, in principle, however is often kept at 1KB. The MFT is itself a file which is stored in the file
system like any other file - it’s not physically stored at any special distinguished location in the file
syste.

The value of any attribute can either be resident or non-resident. Resident attributes are stored in the
file record in the MFT, this is generally reserved for short, fixed-length values. Non-Resident values
will be stored outside the MFT with only a storage location (cluster range) stored in the MFT; this
includes $DATA.

2New Technology

compiled at
2024-01-05 16:03:11Z

28 of 70 Thomas Boxall

M30233 (OSINT) PAGE 8. VIRTUAL MEMORY

Page 8

Async lecture - Virtual Memory
� 2023-12-02 � �

PCs have a number of locations where they can store data. One of these is their Main Memory
which will typically have Gigabytes worth of storage (e.g. 8GB, 16GB, 32GB, etc). Main Memory
is comprised of Random Access Memory which is volatile (looses its contents when the system looses
power). Each byte within the memory has a unique numeric address, and it can be individually read
or written by the CPU. The address is typically a 32-bit or 64-bit binary number.

There are a number of instructions which can be used to manipulate the contents of memory, for
example MOV EAX, [0x101000] will load the contents of memory at location 0x101000 (1052672) to
the EAX register.

The code which comprises software is also stored in memory. Special instructions, for example JMP
exist to control flow through the program.

There are a number of ways in which memory can be addressed. One of these methods is to use a
physical address which is a value between 0 and a large number proportional to the size of available
RAM. Where this is used, multiprogramming is harder due to having to relocate instructions within
memory continually which involves the code of the programs also being edited. Whilst this code edit-
ing can be done automatically, it is still preferred to avoid physical addressing in multiprogrammed
systems as there is still a risk that different user programs may interfere with one another by using
an address outside their allocated space or that user programs could read or write data controlled by
the operating system, which will lead to a system crash.

Another method which can be used to address memory is to use a new abstraction called address space.
This is a clean way of sharing memory amongst processes, which is comparable to thread abstraction
(which is an abstraction for sharing the CPU between multiple threads). In address space, it is as if
each process has a large, private memory space which is addressed between 0 and a limit (similar to
thread abstraction where it is as if each thread is running on its own CPU).

8.1 Introduction to Virtual Memory
Modern PCs and comparable processors implement this virtual memory concept. This is done by them
creating a Virtual Address Space for every process, for 32-bit processors this will typically be from 0
to 232 − 1 address slots and in 64-bit processors from 0 to 264 − 1. All the memory addresses which
are embedded in code will refer to addresses within the allocated virtual space rather than addresses
in the physical memory.

Most processes only use a tiny fraction of their allocated virtual address space. The unused virtual
addresses will simply not have any physical memory addresses assigned to them.

compiled at
2024-01-05 16:03:11Z

29 of 70 Thomas Boxall

M30233 (OSINT) PAGE 8. VIRTUAL MEMORY

If a process requires more virtual memory than the available physical memory can handle, the Oper-
ating System maps some locations or virtual address space to the PC’s secondary storage device (hard
disk).

8.2 Implementing Virtual Memory
Virtual Memory is normally implemented through a process called paging. This is where the virtual
address space is divided into pages or fixed size, for example 4KB. At any point in time, any given
page is either mapped to a frame of the same size in physical memory or unmapped from a frame in
physical memory.

Virtual Memory requires both hardware and software support. The Memory Management Unit
(MMU) within the CPU translates addressees from virtual to physical. It is also the MMU’s re-
sponsibility to raise an interrupt (a page fault) if the virtual address is in an unmapped page. The
Operating System will deal with this interrupt - which might involve allocating an available frame
then copying data between the physical memory and backing store (secondary storage device) where
appropriate. The interplay between the hardware and software could be summarised as hardware deals
with the common, easy cases and it does so very quickly; however it passes control to the OS if it can’t
deal with the request, leaving the OS to do the hard part.

8.2.1 The Page Table

The page table is a data structure which is store in main memory, managed by the OS however
interpreted by the MMU so must be in a format which the CPU can understand. Each process has
its own page table which contains the mapping between the processes’ pages in virtual memory and
the frames which these correspond to in physical memory.

8.2.2 Calculating Addresses

Suppose the instruction MOV EAX, [8196] (copy from memory location 8196 to register EAX) was
issued. The virtual address can be broken down as follows:

8196 = 2× 4K + 4

The address is offset by 4 bytes from the start of page 2, as the page size is 4096 (4K).

To calculate the physical page and offset, divide the virtual address by the page size. The page number
is the integer part of the result, and the offset is the remainder. Using the example above, where Page
2 is mapped to Frame 6, the physical address can be calculated as follows:

6× 4K + 4 = 24580

Note that the offset value of 4 doesn’t change. (We get the page and frame mapping from the Page
Table, which hasn’t been included here for simplicity).

8.2.3 Standard Address Translation

Continuing with the above example where the virtual address 8196 maps to the physical address 24580.
The software only sees the virtual address of 8196 whereas memory only sees the physical address of
24580 (this is the address that goes on the bus).

The Operating System isn’t involved here, everything is done in hardware so it is quite fast. This is
assuming we have a Translation Lookaside Buffer, which will be covered later.

The addresses will be translated between using the Page Table. For this example, the page table can
simply be an array indexed by page number. Each record in the array contains the frame number and

compiled at
2024-01-05 16:03:11Z

30 of 70 Thomas Boxall

M30233 (OSINT) PAGE 8. VIRTUAL MEMORY

a present / absent bit. In practice, the record contains a few more bits (for example, the dirty bit
which records whether this frame has been modified since it was loaded into memory).

8.2.4 Page Fault

In the event that an instruction is issued which references a page which is not currently mapped (the
present / absent bit will be 0) - an event called a page miss will occur.

The MMU cannot deal with the page miss itself as the page must be mapped before the program can
resume. This is a complex task as the data may already be exist somewhere on the disk, it depends
on complex factors relating to the state of the current processes, and the processes are managed by
the OS not the hardware. The MMU will raise an exception (or interrupt) and the process stops
executing. This will trigger the CPU to jump into a page fault handler which has been installed by
the OS - which behaves something like an interrupt handler, like those used in I/O handling and
process scheduling.

If a Page Fault occurs, a frame must be found in physical memory to hold the accessed virtual mem-
ory. This will usually involve evicting some other pages from its frame in memory, which may require
backing data up to disk. Backing up to disk will only be required if the evicted page is dirty (it has
been been updated since last time it was loaded from disk).

Once a suitable frame is found, the accessed page is mapped to that frame. Then a copy of the page
will commonly need to be fetched from disk - where the data was stored earlier after an eviction. The
data from disk is copied to the frame. Finally, the process which produced the page fault, is restarted
at the same instruction that produced the fault.

8.2.5 Page Replacement Algorithms

Deciding which page to evict requires a Page Replacement Algorithm (PRA). Some of the possible
choices are listed below:

• Not Recently Used PRA

• First In, First Out (FIFO) PRA

• Second Chance PRA

• Clock PRA

• Least Recently Used (LRU) PRA

8.3 Implementing The Page Table
When implementing the page table, we have two issues to consider: speed and size. Speed is a critical
factor because the table is accessed in every memory reference which therefore, if it is really slow, will
slow down virtual memory access. Size is a critical factor because for a 32-bit address with a 4KB
page size, the flat array has 220 entries, which is about 1000000; and for a 64-bit address space, also
with 4KB page size, the flat array will have about 252 entries, which is about 4 quadrillion. Both of
these values, are per-process.

8.3.1 Translation Lookaside Buffer

The Translation Lookaside Buffer (TLB) is key optimisation in the MMU. The TLB is a content-
addressable memory which contains a number of recently used virtual addresses as keys where the
values are the same as the corresponding entries in the proper page table. Before going to the page
table, the MMU first looks in the TLB. The TLB is comparable in some regards to the data or
instruction caches, but is much smaller and fully associative.

compiled at
2024-01-05 16:03:11Z

31 of 70 Thomas Boxall

M30233 (OSINT) PAGE 8. VIRTUAL MEMORY

8.3.2 Large Page Tables

The basic page table, which we have been discussing up to this point, is inadequate for large address
spaces.

A two-level page table can be used for 32-bit address spaces. This table contains two levels where the
first points to the second level, reducing the size of any one page table and therefore improving access
times.

An inverted page table can be used for 64-bit address spaces. This table consists of traditional page
table with an entry for each page which references a series of smaller tables each containing references
to a hash table which contain the virtual pages and page frames.

compiled at
2024-01-05 16:03:11Z

32 of 70 Thomas Boxall

M30233 (OSINT) PAGE 9. INTRODUCTION TO ARCHITECTURES

Page 9

Lecture - Introduction to Architectures
� 2023-11-28 � 13:00 � Tamer

Up until now, we have been focusing on operating systems and software. We will now switch focus to
processor architectures.

9.1 Introduction

Instruction Set Architecture (ISA) of a processor defines the logical view of the processor, looking at
how the CPU is controlled by the software. ISA is used by tools and human programmers that generate
machine code for the processor. ISA includes the set of instructions supported by the processor and
features of the processor, including the number and type of register available to the programmer.

9.1.1 RISC

Reduced Instruction Set Computer is a type of ISA. MIPS is a typical example of a RISC instruction
set. RISC first became popular in the 1980s and 1990s, however it remains very important today. In
modern devices, RISC can be found in Advanced RISC Machines (ARM) and PowerPC.

Microprocessor Without Interlocked Pipeline Stages (MIPS) is a type of RISC ISA. This is a simple
form of ISA, when compared to the Pentium-Class x86 ISA which examples have been drawn from
until now.

9.1.2 CISC

Complex Instruction Set Computer is another type of ISA. The CISC architecture is commonly known
as the x86 flavour of RISC which includes processors such as the Pentium and its successors. It
will commonly be found that a CISC processor will first convert x86 instructions to internal-micro-
instructions which are essentially RISC; this simplifies the instruction set which the CPU needs to be
able to execute.

9.1.3 RISC vs CISC

• All RISC instructions are the same length and they all use the same encoding. Whereas, CISC
instructions can be whatever length they so choose.

• A RISC processor will have a large number of general purpose registers, whereas CISC processors
have considerably less.

• All RISC arithmetic instructions operate on register values, not directly on memory. This means
whenever an arithmetic operation is carried out - all relevant values are loaded to a register.
Whereas in CISC, the operands or results can be in either registers or memory.

• RISC has a limited number of simple addressing modes for instructions that move data between
memory and registers, whereas CISC has many addressing modes.

compiled at
2024-01-05 16:03:11Z

33 of 70 Thomas Boxall

M30233 (OSINT) PAGE 9. INTRODUCTION TO ARCHITECTURES

There are, however, some benefits to using RISC:

• RISC focuses on making its limited instruction set execute efficiently

• It is easy to develop an efficient RISC compiler.

• The simplicity and uniformity of RISC instructions facilitates exploitation of Instruction Level
Parallelism (ILP)

9.1.4 Mobile Architecture

While some MIPS processors are still used in embedded systems, MIPS is no longer a dominant archi-
tecture. Instead, most mobile devices use ARM processors. Both MIPS and ARM are types of RISC
ISA.

The 64-bit ARMv8 instruction set has a subset of instructions that differs only slightly from the core
MIPS instruction set.

Despite ARM being more popular in the modern world, we will continue to examine the MIPS in-
struction set in this module.

9.2 MIPS Instructions
As is the case with all ISAs, they contain instructions. MIPS is no different and contains a set of
instructions which can be used to perform functions on the CPU.

Within MIPS, all arithmetic operations involve three registers - this is the same for all arithmetic
operations within MIPS. For example:

add $t0, $s1, $s2

translates to “Take values from $s1 and $s2, then add them together, and put the result in the register
called $t0.”

Full instruction set can be found in the slides on Moodle.

9.2.1 MIPS Registers

MIPS has 32 general purpose registers. While the registers are equal architecturally, names and usages
have been adopted by compilers and programmers. By convention - register names start with $. It
takes 5 binary bits (32 = 25) to identify a register. The table below shows the conventional names
and uses of the MIPS registers.

compiled at
2024-01-05 16:03:11Z

34 of 70 Thomas Boxall

M30233 (OSINT) PAGE 9. INTRODUCTION TO ARCHITECTURES

Name Register number Usage Preserved on
call?

$zero 0 The constant value 0 n/a

1 Reserved for Assembler n/a

$v0 - $v1 2 - 3 Values for results and expres-
sion evaluation

no

$a0 - $a3 4 - 7 Arguments no

$t0 - $t7 8 - 15 Temporaries no

$s0 - $s7 16 - 23 Saved yes

$t8 - $t9 24 - 25 Temporaries (yes, more of
them)

no

26 - 27 Reserved for OS n/a

$gp 28 Global Pointer yes

$sp 29 Stack Pointer yes

$fp 30 Frame Pointer yes

$ra 31 Return address yes

Table 9.1: MIPS Registers

9.3 Datapaths and Control
Within the CPU, there are a number of internal registers and caches which are used within the
Fetch-Decode-Execute (FDE) cycle.

Register Internal store for (typically) one word of data

Program Counter a special purpose register that points into instruction memory

Cache Internal storage to the processor - data and instructions have separate caches. Access time
can be up to one clock cycle

Register File a set of general purpose registers - can take less than one clock cycle to access.

9.3.1 Decoding MIPS Instructions

As the name of the FDE cycle suggests, a critical thing the CPU does is to decode instructions.

MIPS instructions are always 32-bits long and come in one of three different formats: R, I or J. This
makes decoding instructions easy.

compiled at
2024-01-05 16:03:11Z

35 of 70 Thomas Boxall

M30233 (OSINT) PAGE 9. INTRODUCTION TO ARCHITECTURES

Figure 9.1: MIPS Instruction Types

All formats are fundamentally the same, each requiring a 6-bit opcode indicating the instruction to
be carried out then space for specialist data for said instruction. R type instructions are used for
arithmetic instructions, I type are used for branching, transferring and immediate instructions and J
type are solely used for unconditional jump instructions. The abbreviations in the above diagram are
shown below:

funct Function code / operation

shamt Shift amount to be used in shift instructions, zero otherwise

rd The register where the result of the operation is stored

rs The first source operand register

rt The second source operand register

opcode (op) The basic operation of the instruction (goes by either opcode or op)

9.3.2 Control

A core component of any CPU is the Control Unit which is responsible for the entire operations of
the CPU. As part of this, it decodes fields in the instructions - to identify the individual components
which can then be used to control the individual components of the CPU. The CU also controls data
path - routes data between functional units by setting suitable switches “multiplexers” as required by
instructions.

Multiplexing multiple signals onto the same wire, and controlling where those signals go to means
that the CPU can be made more efficient through not needing to have as many physical connections.
The control unit will enable and disable wires as required depending on the operation called.

compiled at
2024-01-05 16:03:11Z

36 of 70 Thomas Boxall

M30233 (OSINT) PAGE 10. MODERN PROCESSORS

Page 10

Lecture - Modern Processors
� 2023-12-05 � 13:00 � Tamer

10.1 Pipelining
Pipelining is one of the simplest, however most important, forms of Instruction Level Parallelism
(ILP). It breaks execution of instructions into a series of similar stages and organises the processor as
a “production line”, with several instructions processed concurrently in different stages of “production”.

Pipelining doesn’t necessarily improve the speed of a single instruction being processed, rather it im-
proves the throughput of the whole system. This can be seen in the following example.

If we take a three stage laundry process, Wash, Dry, and Fold, with four cycles. This can be executed
sequentially as follows

W-D-F-W-D-F-W-D-F-W-D-F

This takes 12 cycles to complete. However, we can pipeline this instructions as follows:

W-W-W-W
D-D-D-D
F-F-F-F

We can see in the above example, that through pipelining the system has saved half of the processing
time. Pipelining can only be utilised where each individual stage is sufficiently simple and of similar
complexity to the others; this ensures that a single instruction can be executed in one clock cycle (so
executed serially, it implies that it would take 4 to 5).

10.1.1 How Pipelining Works in a Processor

Shown below are the functional blocks which make up a processor.

Figure 10.1: Functional blocks of a Processor

compiled at
2024-01-05 16:03:11Z

37 of 70 Thomas Boxall

M30233 (OSINT) PAGE 10. MODERN PROCESSORS

Figure 10.2: Processor Components Functions

As can be seen in Fig.10.1 and Fig.10.2, all stages of the FDE cycle operate in a different functional
unit except for the ID and WB. The conflict between ID and WB is resolved by assuming that the
WB writes in the first half of the cycle and ID reads in the second half. As a result of the different
uses of the functional units, we have the possibility of pipelining instructions. Fig.10.3 shows how
three instructions can be pipelined to reduce the number of cycles needed to process them overall.

Figure 10.3: Execution schedule of 3 pipelined instructions

As seen above, in ideal conditions, using pipelining can create a parallel speedup of up to 5 times.
However, there are hazards that impede this parallelism - for example dependencies between successive
instructions in the pipeline. There are hardware tricks that exist to minimise the impacts of some of
these, however.

10.2 Superscalar Processors
As seen in the section above, simple pipelining allows up to one instruction to be issued and completed
every clock cycle. The next logical development in ILP was to issue more than one instruction per
clock cycle. This requires that processors have multiple execution units, so that more than operation
of a single type (e.g. arithmetic) can be processed concurrently. Continuing with the arithmetic ex-
ample - instead of a single ALU, a multiple issue processor may have a mixture of integer arithmetic
units, multipliers, floating point adders, etc.

Executing instructions in parallel involves reordering of instructions, which involves scheduling in-
structions into groups that can run together without conflicts. This can be done: in advance by the
software that generates the machine code (for example Intel Itanium) or at execution time by the pro-
cessor itself (for example Intel Pentium). Processors that schedule multiple instructions dynamically
(at execution time) are called superscalar processors.

compiled at
2024-01-05 16:03:11Z

38 of 70 Thomas Boxall

M30233 (OSINT) PAGE 10. MODERN PROCESSORS

10.3 Multicore and Many-Core
Methods for increased ILP and clock speed were pursued through from the 1990s onwards, but appear
to have reached their limit. In 2005, Sputter pointed out that clock speeds for Intel CPUs had stuck
at around 3.5 GHz (ticks 3.5 billion times per second). Nearly twenty years on from that observation,
it it still valid; clock speed is now limited by power consumption and heat dissipation.

10.3.1 Multicore

In response to a single core not performing well enough, manufacturers begun making multicore CPUs
where there are multiple independent CPUs on a single chip. Nowadays it’s common to have a quad-
core, hexa-core or octa-core in a consumer device; with server hardware extending to over 48-core
CPUs.

10.3.2 Many-Core

In recent years, there has been a growing interest in harnessing massively parallel GPU accelerators
with hundreds or thousands or processing elements for computationally demanding tasks. This is an
example of a many-core system.

compiled at
2024-01-05 16:03:11Z

39 of 70 Thomas Boxall

Theme II

Internetworking

40

M30233 (OSINT) PAGE 11. NETWORKING SERVICES: DNS, DHCP, ETC

Page 11

Lecture - Networking Services: DNS,
DHCP, etc
� 2023-09-25 � 09:00 � Thanos

Follow up material for lectures will be posted on Moodle. This will commonly include LinkedIn Learning
courses. Do them. Answers to Lab Sessions should be uploaded to our individual Wiki sections for
each theme as pdf files. They will not be assessed but we may be asked to show them to Lab staff at
some point.

11.1 Dynamic Host Configuration Protocol

Dynamic Host Configuration Protocol (DHCP) provides a set of important configuration parameters
for devices which are connected to a network. These parameters include: IP address (this is required
for any device to be able to talk on a network); router address (the address of the device which your
communications has to go through to be passed onto the right place); subnet mask; and DNS server
address.

DHCP was introduced in 1993, before DHCP - IP addresses were manually assigned to each device
on the network. Whilst, this was a viable option and can still be done to this day - it makes network
administrators lives much more complicated. There was also the Bootstrap Protocol (BOOTP) as
DHCP supports temporary leases of IP addresses to clients with minimal human interaction. DHCP
servers are compatible with BOOTP clients.

For DHCP to work on a network, you require a DHCP server. This commonly is built into modern
domestic routers however in larger organisations - a separate (virtual) server will be used.

When a client is shut down or it terminates its connection to the internet - it releases it’s IP address.
This IP address is returned to the IP pool which means it is then available for another client to use.
IP address leases are automatically renewed when 50% of the lease time is used. This works by a
request to the original DHCP server. If its not available then the request is broadcast to all available
DHCP servers. The IP address lease gets renewed as it prevents the need for a new IP address to be
assigned.

We use DHCP for a number of reasons: it saves the network administrator from a lot of manual
configuration; it allows devices to move from one network to another and gain instant connectivity
(there may be conflicting devices if static IPs were used); it allows for more efficient utilisation of
available IP addresses (whereby inactive clients do not obtain IP addresses).

There are, however, a number of disadvantages to using DHCP: DHCP packets are UDP packets
which means they are unreliable and insecure; there is a potential for unauthorised clients obtaining
IP addresses which would then make them appear legitimate (this can be avoided by using MAC
address filtering); and there is potential for malicious DHCP clients and server which could lead to

compiled at
2024-01-05 16:03:11Z

41 of 70 Thomas Boxall

M30233 (OSINT) PAGE 11. NETWORKING SERVICES: DNS, DHCP, ETC

incorrect configuration parameters being supplied to clients and / or the IP pool being exhausted.

Figure 11.1: DHCP Initial Message Flow

11.1.1 Terminology

DHCP Packet DHCP Message

DHCP Client Client

DHCP Server Server

Lease Length of time a DHCP client can use a specified IP address

11.2 Domain Name System

Domain Name System (DNS) is the mechanism by which Internet Software translates names to at-
tributes such as IP addresses. Architecturally, DNS is a globally distributed, scalable and reliable
database which is comprised of three components: a namespace, servers (makes the namespace avail-
able) and resolvers (clients - these query the servers about the namespace).

DNS exists to make users’ use of the internet easier. Users generally prefer names (thomasboxall.net)
to numbers however computers usually prefer numbers (145.14.152.146) to names. DNS provides
the mapping between the domain names and IP addresses of servers.

DNS is distributed globally throughout many different devices. No single computer holds all the DNS
data, however some remote DNS data is locally cached to improve performance. DNS lookups can
be performed by any device. DNS lookups can be performed by any device. On UNIX systems, the

compiled at
2024-01-05 16:03:11Z

42 of 70 Thomas Boxall

M30233 (OSINT) PAGE 11. NETWORKING SERVICES: DNS, DHCP, ETC

command dig provides this utility.

The DNS database is always internally consistent. This is achieved by each version of a subset of the
database (a zone) having a serial number which is incremented on every database change. Changes
to the master copy of the database are replicated according to timing set by the zone administrator,
generally this is quite frequent. Cached data expires according to a timeout set by a zone adminis-
trator. While there is no limit to the size of the DNS database, common sense dictates that its not a
good idea to store 200,000,000 domain names in the same database as there is no limit to the number
of queries. This can lead to 10,000+ queries being sent each second which are handled easily. Queries
are distributed among primary and secondary DNS servers as well as caches. The nslookup command
will tell you where it has obtained the DNS information from.

Due to DNS data being replicated from the primary to multiple secondary servers, there is high lev-
els of reliability. Clients will typically query local caches first, and if they do not contain the data
requested then the queries will be passed to either the primary server or any secondary server. DNS
uses both UDP and TCP (port 53) for different things: TCP is used for intra-server communications
and UDP is used for communications between clients and servers.

The DNS database can be updated dynamically. This includes the addition, deletion or modification
of any record. However, it is only the primary server which can be dynamically updated. The
modification of the primary database triggers replication to all the secondary databases.

11.3 Domain Names

A domain name is the sequence of labels from a node to the root, separated by dots (.) which is read
from left to right. The namespace has a maximum depth of 127 levels and domain names are limited
to 255 characters in length. A nodes domain name identifies its position in the namespace.

Figure 11.2: DNS Structure

One domain is a subdomain of another if its domain name ends in the other’s domain name.

compiled at
2024-01-05 16:03:11Z

43 of 70 Thomas Boxall

M30233 (OSINT) PAGE 11. NETWORKING SERVICES: DNS, DHCP, ETC

Figure 11.3: Anatomy of a domain

Name servers store information about the namespace in units called zones. The nameservers that
serve a complete zone are said to have authority or be authoritative for the zone. More than one name
server can be authoritative for the same zone, ensuring redundancy and load spreading. Also, a single
name server may be authoritative for many zones. There are two types of Name Servers: authoritative
which maintains the data (has subtypes of primary and secondary) and non-authoritative which caches
the authoritative server. No special hardware is needed for a name server.

Name resolution is the process by which local resolvers and the nameservers cooperate to find data in
the namespace. Upon receiving a query from a resolver, a name server:

1. looks for the answer in its authoritative data and its cache.

2. if step 1 fails, the answer must be looked up through other servers (this can either be done
recursively or iteratively).

compiled at
2024-01-05 16:03:11Z

44 of 70 Thomas Boxall

M30233 (OSINT) PAGE 12. IP ADDRESSES & SUBNETTING

Page 12

Lecture - IP Addresses & Subnetting
� 2023-10-02 � 09:00 � Thanos

NB: This page also covers this lecture and the following week’s (2023-10-09) as the same slide deck &
topic was split across two weeks.

12.1 Layer 3 Functionalities
Layer 3, in the OSI model, handles the routing of the data by delivering it to the correct destination.
It is the layer which allows networks to communicate with each other.

The functionalities of layer 3 are spread all over the network - in ad hoc hardware (routers) and in
PCs (through routing software by the operating systems)

12.1.1 Internet Protocol, a reminder

The Internet Protocol, IP, is a connectionless protocol which delivers datagrams through best effort
delivery. This means it’s not 100% efficient at delivering data however it will try its best to deliver
the data its supposed to deliver. Naturally, this introduces a level of unreliability - as there is no
guarantee of orderly delivery. However, there is an error checking algorithm used whereby if the buffer
is full or the error check fails, the packet is discarded and another protocol may issue the send again
command.

The Internet Protocol also has a number of functions when used in data transmission and receiving.
In transmission: encapsulates data from the transport layer into datagrams and prepares headers (the
source and destination addresses, etc) as well as applying routing algorithms at routers and forward-
ing the datagram to the Network Interface Card of the device which is transmitting the datagram.
When receiving, IP: checks the validity of incoming datagrams then reads the header; it then checks
if forwarding is required and if it is, then it will send to the appropriate network interface to forward
the packet and if not requried then it will pass the payload to the next upper layer of the OSI model.

The Internet Protocol also provides us with IP addresses, its this which we will focus on for the
majority of the lecture.

12.2 IP Addresses
An IP address is a unique identifier used to identify different devices on the network. In regular
operation, there are two types - IPv4 and the newer IPv6. We will primarily be focusing on IPv4.

IPv4 uses a 32-bit string which has two notations.

System Notation uses a 32-bit string of binary.
For example 10010011101000110001010000001001

compiled at
2024-01-05 16:03:11Z

45 of 70 Thomas Boxall

M30233 (OSINT) PAGE 12. IP ADDRESSES & SUBNETTING

Dotted Notation (bin) uses a 32-bit string of binary, with the bits divided into bytes.
For example 10010011.10100011.00010100.00001001

Dotted Notation (dec) uses decimal representtion of the binary numbers, this is the most common
to see as it is the most human friendly. As each section of the IP address is a byte, the range of
decimal values is 0 to 255 inclusive..
For example, 147.162.20.9

12.2.1 IP Address Structure

Any IPv4 address is portioned into two fields. The first being the network address and the sec-
ond being the host address. The network address is the same for every device on the network (e.g.
192.168.xxx.xxx) and the host address is the part which uniquely identifies that device on the net-
work (e.g. xxx.xxx.101.236).

12.2.2 Classful IP Addresses

There are two ways to use IP Addresses, classful and classless. Classful is the older method which is
being used less however we will cover this first the conver classless later in the module.

In classful IP addressing, the network ID can either be 8, 12 or 24 bits in length (this is either 1, 2,
or 3 blocks). The first bits of the NetworkID, as shown in the diagram below, indicate which class a
IP address belongs to.

Figure 12.1: Primary IP address classes and structure

There are also two additional classes, these are shown below.

compiled at
2024-01-05 16:03:11Z

46 of 70 Thomas Boxall

M30233 (OSINT) PAGE 12. IP ADDRESSES & SUBNETTING

Figure 12.2: Primary IP address classes and structure

The table below shows the dotted decimal ranges which are allocated for the different classes.

Address Class Start IP range End IP range

Class A 1.xxx.xxx.xxx 126.xxx.xxx.xxx

Class B 128.0.xxx.xxx 191.255.xxx.xxx

Class C 192.0.0.xxx 223.255.255.xxx

Class D 224.xxx.xxx.xxx 239.xxx.xxx.xxx

Class E 240.xxx.xxx.xxx 255.xxx.xxx.xxx

Table 12.1: Dotted Decimal ranges for classful IP addresses

Despite the ranges shown above, there are some reserved IP address ranges for different purposes.
These are shown below.

Start IP range End IP range Purpose Class

10.0.0.0 10.255.255.255 Non-Internet
Routable LAN
use

A

127.0.0.0 127.255.255.255 Localhost loopback
address

-

172.16.0.0 172.31.255.255 Non-Internet
Routable LAN
use

B

192.168.0.0 192.168.255.255 Non-Internet
Routable LAN
use

C

Table 12.2: Dotted Decimal ranges for classful IP addresses

When referring to a network address of a given IP address, then all the HostID bits should be set to
0. For example, the IP address 12.25.89.124 has the HostID of 12.0.0.0.

compiled at
2024-01-05 16:03:11Z

47 of 70 Thomas Boxall

M30233 (OSINT) PAGE 12. IP ADDRESSES & SUBNETTING

12.3 Subnetting
IPv4 provides us a theoretical maximum of 4,294,967,296 unique IP addresses. These are broken into
three classes

Class C provides 254 assignable host addresses (28 − 2)

Class B provides 65534 assignable host addresses (216 − 2)

Class A provides 16,777,214 assignable host addresses (224 − 2)

This is a very inflexible system, as there are only three boxes which everyone must fit into.

12.3.1 Usable Host Addresses

The number of usable host addresses for a given IP range can be calculated from the formula: total
number of host addresses minus 2.

The following example will show this:

• You have been assigned a class B network address (128.147.0.0)

• This gives the IP range 128.147.0.0 - 128.147.255.255

• However! The first assignable address of it is 128.147.0.1 as 128.147.0.0 is the network
address which is not assignable

• The last assignable address is 128.147.255.254 as 128.147.255.255 is the network’s broadcast
address - which is not assignable.

12.3.2 Introduction to Subnetting

Subnetting is the process of dividing one big network into several subnetworks. Each subnet behaves
as a physical network however they are not physically separated, just logically separated.

We use subnetting because despite the fact, for a class B network, we can accommodate 65534 hosts
- its inefficient to do this and is a pain to manage. There are also performance drawbacks to not
subnetting.

When subnetting, we introduce a new component of the IP address. n-bits of the HostID now become
a SubnetID. This is used to identify the subnet. Commonly, for class B IP addresses, this is the third
byte.

12.3.3 Subnet Address and Mask

In this example, we use the host IP address of 148.197.9.18
(10010100.11000101.00001001.00010010). As this is a Class B IP address, it has the default subnet
mask of 255.255.0.0 (11111111.1111111.00000000.00000000).

We now create a Custom Subnet Mask, which is decided by the network admin and will be longer than
the default class mask. It tells us where the new boundary between the NetworkID and HostID is.
We will set the custom subnet mask to /21, the subnet mask now reads as 255.255.248.0
(11111111.11111111.11111000.00000000).

Ultimately, this gives us a new (sub)network ID of 148.197.8.0/21
(10010100.11000101.00001000.00000000)

compiled at
2024-01-05 16:03:11Z

48 of 70 Thomas Boxall

M30233 (OSINT) PAGE 12. IP ADDRESSES & SUBNETTING

12.3.4 How Many Subnets and Hosts?

The number of subnets you can create is calculated from the formula 2n where n is the number of bits
used to create the SubnetID. For example, if the SubnetID is 255, this uses 8-bits therefore 28 = 256
subnets.

As the SubnetID is 8 bits long, this leaves the HostID with 8-bits. The number usable hosts per subnet
can be calculated with the formula 2n − 2 where n is the number of bits in the HostID. Using the
above example, where the SubnetID is 8 bits therefore the HostID is 8 bits, we get 28−2 = 254 usable
host addresses. But why do we have to subtract 2. We have to subtract 2 from the total number of
Host addresses because when the HostID bits are all 1s, this is the broadcast address for that network
and where the HostID bits are all 0’s is reserved for that device on the network.

compiled at
2024-01-05 16:03:11Z

49 of 70 Thomas Boxall

M30233 (OSINT) PAGE 13. VLSM AND SUPERNETTING

Page 13

Lecture - VLSM and Supernetting
� 2023-10-16 � 09:00 � Thanos

13.1 Variable Length Subnet Mask

A Variable Length Subnet Mask (VLSM) allows more than one subnet mask in the same network. It
was introduced to solve the problem of classful subnets being too restrictive due to their fixed size
nature.

Not only does VLSM allow efficient use of the available address space, it allows the use of variable
subnet mask lengths within the same supernet. It also allows the address space to be broken up
into blocks of variable size, which provides more flexibility in network design; and allows for route
summarisation (which is covered in CIDR later in the module).

For VLSM to be able to be used, the routing table needs to specify the extended network prefix
information (subnet mask) for every entry; and the routing protocol must carry the extended network
prefix information with each route advertisement. VLSM also needs to be supported by the routing
protocol; most common routing protocols nowadays natively support VLSM.

VLSM makes use of something called Route Aggregation. This is where the detailed structure of
routing information for one subnet group can be hidden behind another subnet group - therefore
reducing the number of entries in the routing table.

13.2 VLSM Example
In this example, you are designing a new network with a network address of 192.168.12.0/24 which
has the following requirements:

• First subnet with 100 hosts

• Second subnet with 30 hosts

• Third subnet with 5 hosts

• Fourth subnet with 3 hosts

13.2.1 Step 1: Biggest Subnet

When working out VLSM subnets, always work from biggest to smallest subnets.

The biggest subnet needs 100 usable hosts, which means it needs 102 host addresses in total. To
achieve this, we reserve the highest number of bits (working left to right) which includes enough
addresses for all devices within the subnet. In this example, that would be 1 bit - reserving 128
host IDs (192.168.13.0 - 192.168.13.127 with the mask /25). The Subnet ID is the first address

compiled at
2024-01-05 16:03:11Z

50 of 70 Thomas Boxall

M30233 (OSINT) PAGE 13. VLSM AND SUPERNETTING

(192.168.13.0) and the subnet’s broadcast address is the last address (192.168.13.127) - remember
that neither of these are assignable to hosts.

The un-used host addresses are left in the un-used pool and we will come back to them in the next
step.

13.2.2 Step 2: Subnet with 30 hosts

The next biggest subnet we need to create needs 30 usable host IDs. Using the highest number of
bits rule, we reserve an additional 2 bits, meaning the mask for this subnet is /27. By using a mask
of /27, it means 32 hostIDs are reserved. This is just enough for our needs as we need 30 usable +
the standard 2 unusable. For proper deployments, it would be wise to reserve 1 less bit for the mask
therefore giving 62 usable host IDs.

The IP range of this subnet is 192.168.13.128 - 192.168.13.159 with a mask of /27. The remaining
IP addresses in the range are passed to the next biggest subnet.

13.2.3 Step 3: Subnet with 5 hosts and subnet with 3 hosts

We’ll take the next two subnets together as they both will use the same mask of /29. The same pro-
cess as above is followed to give the subnet needing 5 useable addresses having range 192.168.13.160 -
192.168.13.167 and the subnet needing 3 useable addresses having range 192.168.13.168 - 192.168.13.175.
Both subnets have 8 host addresses in total, meaning they have 6 usable addresses which is enough
for our needs.

13.2.4 Summing It Up

That’s all the subnet’s created and we have 80 addresses left in the range we’ve been assigned for
future growth: 192.168.13.176 - 192.168.13.255 are free.

HostIDs
Needed

Subnet Ad-
dress

Network
Prefix

First Usable
Address

Last Usable
Address

Broadcast
Address

100 192.168.13.0 /25 192.168.13.1 192.168.13.126 192.168.13.127

30 192.168.13.128 /27 192.168.13.129 192.168.13.158 192.168.13.159

5 192.168.13.160 /29 192.168.13.161 192.168.13.166 192.168.13.167

3 192.168.13.168 /29 192.168.13.169 192.168.13.174 192.168.13.175

Table 13.1: Finished VLSM IP allocations

13.3 Supernetting
Supernetting is when you combine several class C networks into one big network to create a larger range
of available IP addresses. For this to work, however, the assigned class C addresses must be contiguous.

The address of the supernet is the network address of the fist contiguous network.

compiled at
2024-01-05 16:03:11Z

51 of 70 Thomas Boxall

M30233 (OSINT) PAGE 14. SUPERNETTING & CIDR

Page 14

Lecture - Supernetting & CIDR
� 2023-10-30 � 09:00 � Thanos

14.1 Classless Inter-Domain Routing

Classless Inter-Domain Routing (CIDR) was officially developed in September 1993 (which is a com-
mon age for routing algorithms, however, they have been updated to use more modern technologies
etc). It is also known as supernetting and was considered a fundamental solution for the routing table
problem. CIDR was considered a temporary solution to the internet address space depletion issues,
whereby we were running out of IPv4 spaces due to them being inefficiently assigned in the early days
of the internet.

14.1.1 The Routing Table Problem - CIDR

CIDR’s main purpose is to replace the classful IP addressing methods as Class C addresses commonly
don’t have enough hosts, however Class B has too many hosts - thus rendering both pretty useless!
Furthermore, given the size and limited number of class B addresses, these were very quickly exhausted.

14.1.2 How CIDR works

CIDR follows a classless approach, completely abandoning the classful concept. You are required
to specify the network prefix as routers do not identify IP classes. The network prefix is needed to
identify the division point between the NetID and HostID. The prefix also needs to be supported
by the routing protocol. CIDR is somewhat similar to VLSM, however CIDR applies to the whole
internet.

14.1.3 CIDR Requirements

Broadly speaking the requirements for CIDR are the same as those for VLSM, except on a worldwide
scale. The routing protocol must carry the network prefix for every advertised route; routers must
implement a consistent forwarding based on the longest match; and route aggregation can happen
only if topologically significant addresses are assigned.

Longest Match forwarding algorithm is where you have two or more matching entries in your routing
table for a specific destination - you select option which has the largest NetID therefore you have the
least HostIDs on that network.

14.2 Supernetting

Supernetting is the process of combining several small (class C) networks into one big network to
create a larger range of addresses.

compiled at
2024-01-05 16:03:11Z

52 of 70 Thomas Boxall

M30233 (OSINT) PAGE 14. SUPERNETTING & CIDR

For example, an organisation is assigned a range of 2n class C addresses where the range is contiguous.
We can then reserve network bits for use by the HostID. This can be seen in the table below where
the penultimate and final bits in the third byte are now part of the HostID.

Full IP NetID NetID reserved bits HostID

213.2.96.0 11010101.00000010.01100 00. 00000000

213.2.97.0 11010101.00000010.01100 01. 00000000

213.2.98.0 11010101.00000010.01100 10. 00000000

213.2.99.0 11010101.00000010.01100 11. 00000000

Table 14.1: Breakdown of NetID and HostID in supernetting

The supernet’s mask is 255.255.252.0 and the address of the supernet is 213.2.96/22

compiled at
2024-01-05 16:03:11Z

53 of 70 Thomas Boxall

M30233 (OSINT) PAGE 15. INTERNET ROUTING

Page 15

Lecture - Internet Routing
� 2023-11-06 � 0900 � Thanos

15.1 Routing
Routing is the act of forwarding network packets form a source network to a destination network. We
use routing protocols to cover the “what if’s” and complications which may arise through routing.
Some of the “what if” conditions which can occur could be: when should you route a packet, what is
the best route to take, how do you know that’s the best route to take, what if there is a fault in the
network, what if the destination doesn’t exist, what if a packet has a different network destination to
the host, what if the topology changes.

Fundamentally routing of any packet is done in a very similar fashion, however the intricacies change
depending on which protocol is used and the exact situation in which routing is used. An example of
routing a packet is as follows:

• Workstation A sends an email to Workstation B

• Workstation A determines if Workstation B is on the same network by checking the local routing
table

• Determines that Workstation B is on a different network

• Send the packet to the default gateway which will send the packet in the right direction of the
different network.

15.1.1 Routing Tables

Routing Tables are the things which live within Routers which contain all the relevant routing infor-
mation for that router. As the name suggests - they are displayed as a table.

Code Network, Mask AD / Metric Next Hop Interface

O 10.0.0.0/8 110/20 200.1.1.1 S0

O 172.16.0.0/16 100/15 200.1.1.1 S0

O 192.168.1.0/24 100/20 200.2.2.2 S1

C 210.1.1.4/30 0/0 Directly Connected E0

Table 15.1: Example Routing Table

Code what process discovered the route

compiled at
2024-01-05 16:03:11Z

54 of 70 Thomas Boxall

M30233 (OSINT) PAGE 15. INTERNET ROUTING

Network, Mask address of destination network and its subnet mask (only stores network IDs of
networks the router can reach and Host IDs of the devices on its network)

Administrative Distance/Metric used to select the best route

Next Hop IP address of the next hop router

Interface the interface that the packet will be forwarded on

15.2 Static Routing
An environment which static routing is used within means that the routing tables are manually
populated. This is an almost impossible task to maintain in modern networks, due to the size and
speed at which they change. However - static routing is ideal for small, stable networks which don’t
have redundant network links where the dynamic routing protocols (which use network resources
learning where all the nodes are) may use too much of the network resources. Often static routing is
coupled with dynamic routing - which can provide the ‘best of both worlds’. Using Cisco software &
hardware, static routes can be configured with IP route commands.

15.3 Dynamic Routing
As we’ve already established - static routing isn’t the answer for everything, so we need something
else. This is where Dynamic Routing comes in. Dynamic Routing provides an automated approach to
constructing and maintaining the routing table which therefore means that a network administrator
doesn’t have to re-build the routing table every time a change is made to the network or networks
which can be connected to. Dynamic Routing learns about the network and it should be deployed on
any sized network.

15.4 Routing Protocols
A Routing Protocol is a set of rules that allows two or more routers to exchange information about the
networks which they are connected to. They are based on an algorithm to solve the communication
problem, which means that they are a process which runs on the router. The algorithms which under-
pin routing protocols are based on graph theory, where the router is the dot and the link is the networks.

No single protocol has solved all the routing problems to date! There have been numerous attempts
over the years, none of which have fully solved the problem.

15.4.1 Design Considerations

When designing routing protocols, there are a number of networking issues which need to be taken
into consideration, primarily - how does the router collate the network data to populate the routing
table? The answer to this is usually that the router needs to be able to communicate with other
routers, so that it can pass its own knowledge of the networks to another router as well as receive this
data from other routers. A common language of communication is required between routers so that
they can all communicate together not just send each other a garbled mess of data. Routers need to be
able to identify their status and identify the status of those routers which they are receiving data from.

It’s all well and good wanting all routers to use the same language when doing inter-router communi-
cations however - its not that simple. The language and vocabulary is unique to a particular routing
protocol, which means that communications can only be done between routers which use the same
protocol and routers that support different protocols can’t communicate between each other.

compiled at
2024-01-05 16:03:11Z

55 of 70 Thomas Boxall

M30233 (OSINT) PAGE 15. INTERNET ROUTING

15.4.2 Convergence

If a change to the network occurs, it means that the routing table will need updating. The time which
it takes until this happens is called ‘convergence’. If the convergence is very slow - this can cause
problems as it means packets will be sent to the wrong destinations.

Convergence is triggered by one or more of the network links failing, as every other node will need to
be informed not to use this or if a router crashes - which can have a potentially catastrophic impact
on the network.

15.4.3 Characteristics of a Routing Protocol

There are a number of characteristics which a routing protocol must incorporate

• Robustness

• Optimisation

• Flexibility

• Speed of Convergence

• Avoidance of routing loops (this is covered in more detail later in the lecture)

• Support for classless addressing

• Simplicity

15.4.4 Metric of Routing Protocols

To help routing protocols decide which route is best to send a packet down, especially in circumstances
where more than one route is discovered, each route is assigned a metric value. There are a number
of factors which can be taken into consideration when assigning a metric value:

Hop count the number of routers to traverse in order to reach the destination

Path length the sum of the per-link costs for each link traversed

Bandwidth the speed of the link between routers

Delay the time in milliseconds to cross a link

Load the congestion on the link due to traffic

Reliability a score base don the bit error rates of the paths

It’s important to note that not all routing protocols use all the variables listed above.

15.4.5 Dynamic Routing Protocols

There are two ways in which dynamic routing protocols are categorised.

Exterior gateway protocols are developed to facilitate routing between autonomous systems (a system
under a single administration control, ie. the University Network).

Interior Gateway Protocols are developed to facilitate routing within autonomous systems. Most
protocols are interior protocols.

compiled at
2024-01-05 16:03:11Z

56 of 70 Thomas Boxall

M30233 (OSINT) PAGE 15. INTERNET ROUTING

15.4.6 Routing Paths

Multiple paths to a network may exist, however not all routing protocols can actually install multiple
paths. If only one path can be installed into the routing table it should be the best path, if this failed
then the next best path would be installed. If a multipath routing protocol is used, a primary path
is identified. Multiplexing can be used to route packets via multipath to reduce throughout and use
load balancing, improving network performance and reliability.

15.4.7 Hierarchical Routing

To reduce routing update on network bandwidth, routers can be configured in a hierarchical topology.
Therefore, routers are grouped into areas and some of the updates are confined to those areas. Areas
will communicate as well but the updates are segregated on a need-to-know basis. This helps with
the management of network resources.

15.4.8 Route Summarisation

Route Summarisation is the concept of reducing the number of entries in the route tables while still
facilitating paths to all know networks. This helps to combat the increasing routing table sizes which
comes from subnetting, which leads to the lookup processes taking longer as well as requiring larger
memory space and greater CPU resources. Route summarisation can define a single path to multiple
subnets, therefore reducing the size of the routing tables.

Summarisation can be used at the address assignment level and at the organisation level. Auto-
summarisation is available, whereby the routing protocol summarises routes by default. This can, of
course, be disabled.

15.4.9 Routing Loops

A major problem in routing is a routing loop. This is where a packet travels endlessly around the
network without reaching its destination. This is caused by the routing table not holding the most up
to date information, which can then lead to routing decisions being based off of incomplete / incorrect
information. Delay in network convergence is often the main cause of a routing loop.

15.5 Distance Vector Protocols
Distance Vector protocols work by choosing the path with the lowest number of hops as the option to
add to the routing table.

The updated routing table and routing information is passed from a router to its immediate neigh-
bours. These are sent as update packets which are sent via broadcasting. When an update is received,
the router adds its to the routing table then passes the information on itself to its neighbours. Eventu-
ally, all the routers will learn the paths to all networks which therefore means the network is converged.

A vector is the direction of the next hop. Routers will store the IP address of the next hop router
(which will hav the lower cost path), this is the next location packets will be forwarded to, towards
their destination.

Whilst hop count and bandwidth do improve the efficiency of routing, a problem with distance vector
routing is that they consume a lot of network resources due to the fact that the full routing tables are
broadcast every 30 seconds by default and routing tables can be very large. The process of re-sending
the routing table every 30s can affect convergence due to delay incurred in sending so many update
packets. Distance vector protocols are also prone to loops which is where two routers point to each
other as the path to a network, therefore causing the packet to be bounced between the two routers.

compiled at
2024-01-05 16:03:11Z

57 of 70 Thomas Boxall

M30233 (OSINT) PAGE 15. INTERNET ROUTING

15.6 Link-State Protocols
Link-State protocols work based on the shortest path, which is based on Dijkstra’s algorithm. They
work on first-hand information which is transmitted via Link State Advertisement (LSA), which
includes the state of the directly connected router links. This massively improves the speed of con-
vergence over Distance Vector protocols as the entire routing table isn’t transmitted. Routing table
updates are initiated on a change of a link state only, which minimises unnecessary use of available
bandwidth.
Link state determines how many routers are connected and what networks they have connected to
them, this means that each router ends up with a topology map of the system.

Through having an entire map of the system, routing loops are less prone as routers are not tricked
into routing packets back to themselves.

In Link-State algorithms, update packets can be sent via multicast rather than broadcast which
majorly reduces the load on the network. The routers can be configured in a hierarchical fashion
which reduces unnecessary traffic and supports the elimination of routing loops.

15.7 Internet Routing Protocols

Figure 15.1: Overview of Types of Internet Routing Protocol

compiled at
2024-01-05 16:03:11Z

58 of 70 Thomas Boxall

M30233 (OSINT) PAGE 16. ROUTING INFORMATION PROTOCOL

Page 16

Lecture - Routing Information Protocol
� 2023-11-13 � 0900 � Thanos

Routing Information Protocol (RIP) is an old protocol, which despite its age, supports classless net-
works. It is a distance vector protocol which is based on the Bellman-Ford algorithm that is used to
compute the cost for a route. The metric used by the protocol is the hop count, it does not consider
variables such as bandwidth, load, reliability, etc.

16.1 Advantages & Disadvantages
RIP is supported on the widest variety of networking platforms and is acceptable for use in smaller
networks. It is easy to configure and good for networks with few or no redundant paths. It is also
good for networks with similar speed network links. However, RIP’s maximum hop count is 15, which
means that for any node with a hop count over 15 - the destination is unreachable. RIP is also prone
to looping due to a slow convergence time; and RIP is a chatty protocol whereby it sends the entire
routing table every 30 seconds by default, using a considerable amount of the available bandwidth.

16.2 Versions

16.2.1 Version 1

Version 1 of RIP supported class-based routing primarily, with little support for classless addressing.
It is rarely used anywhere nowadays and anywhere it is used, it shouldn’t be.

16.2.2 Version 2

Version 2 of RIP (RFC 2453) comes with Auto-Summarisation enabled by default. Multicast is used
rather than broadcast to communicate with neighbouring routers, this reduces the processing on
network hosts that don’t care about RIP traffic. RIPv2 also supports simple password authentication,
making it more secure.

16.3 Advertising Routes
1. When the router is first booted, a routing table is created using only the directly connected

networks and any statically added Routes

2. After it initialises, the router will send its routing table to its immediate neighbouring routers
through all its interfaces. (RIP considers neighbouring routers to be one which shares a common
interface link with itself)

3. RIP continues to share its routing tables with neighbouring routers every 30 seconds.

4. A variability can be introduced so not all updates are triggered at the same instant. This is
called jitter.

5. A RIP router can be configured to not advertise updates unnecessarily.

compiled at
2024-01-05 16:03:11Z

59 of 70 Thomas Boxall

M30233 (OSINT) PAGE 16. ROUTING INFORMATION PROTOCOL

16.4 Learning Routes
A key component of RIP is its ability to learn new routes. Once a new route has been discovered,
the router adds it to its routing table. The router then advertises the newly learnt route to other
connected routers. Every router learns the path to every network advertised by RIP. Changes or
failures are also advertised to the neighbouring routers.

It can take some time for all the routers on a network to be updated with the latest information -
this time is called the convergence time. Once all the routing tables of all routers are updated, the
network is considered converged.

The routers continue to broadcast their entire routing table every 30 seconds, this is where RIP earns
its name as a chatty protocol. This design also means that the protocol is bandwidth hungry.

16.5 Routing Tables
The routing table is the routers master database of all the routes it can send to. An extract from a
routing table is shown below.

Method IP Address Network
Mask

(AD/Cost) Gateway, Port

C 192.168.10.0 /24 (0/0) is directly connected,
Ethernet0

200.1.1.0 /30 is subnetted 2 subnets

C 200.1.1.4 (0/0) is directly connected,
Serial1

R 200.1.1.8 (120/1) via 200.1.1.6,
00.01.05, Serial1

R 192.168.20.0 /24 (120/1) via 200.1.1.6,
00.01.05, Serial1

R 192.168.30.0 /24 (120/2) via 200.1.1.6,
00.01.05, Serial1

Table 16.1: Example routing table

The example table above shows that three routes have been learnt. These are signified from the entries
where the method is set to R (standing for RIP). Where the method is C, this means the route is
directly connected to the router.

The values in the brackets are the Administrative Distance / Cost. The AD is a defined value for each
protocol, its 120 for RIP and the cost will vary.

Most routing tables will look very similar, however other routers will store supplementary data in
other databases.

16.6 Routing Timers
RIP makes use of a number of timers which help the operations of it.
The update timer dictates the interval routing updates - this defaults to 30s unless otherwise configured.

compiled at
2024-01-05 16:03:11Z

60 of 70 Thomas Boxall

M30233 (OSINT) PAGE 16. ROUTING INFORMATION PROTOCOL

The invalid timer is used to determine if a route should still be advertised or not, if a route is not
heard from in this time - routers will assume its not longer available. Defaults to 180s unless otherwise
configured.
The flush timer controls how long after the invalid timer has passed before the router informs its
neighbours that the route should be flushed.

16.7 Preventing Routing Loopbacks
Fundamentally, the speed of convergence is the biggest factor here. Convergence needs to be as fast
as possible. However, there are also a number of techniques built into distance vector routing that
help to prevent routing loopbacks

• Maintain only the best RoutesTimeout directly connected routes immediately upon failure

• Route Positioning

• Split Horizon

• Triggered Updates

• Poison reverse

• Maximum hop count is 15 hops

16.7.1 Spit Horizon

Advertising a route back to the router that told you about the route in the first place is a mistake.
Therefore a rule is included in routing whereby ‘must never advertise a route back to the link you
learnt it from’. Obviously, you would still advertise all routes to a link which it didn’t give you in the
first place.

16.7.2 Hold Down Timer

The hold down timer helps to stabilise route tables and avoid loopbacks. The primary rule here is to
‘once a route table is updated, ignore any updates about the route until the hold-down timer expires’.
RIP’s default value for this is 180s. This timer acts as a buffer when network conditions change rapidly
- especially when route flapping is happening. Route Flapping is where a temporary link is connected
and disconnected intermittently.

16.7.3 Trigger Updates

Trigger update is a complementary rule to route poisoning (where a route is assigned a unrealistically
high metric rendering it useless) making it even more effective Here router B will not wait the full 30s
to tell router C about the poisoned route - the update is ‘triggered’ once the route is poisoned. The
update will only include just enough information about the poisoned route for it to be acted upon.

compiled at
2024-01-05 16:03:11Z

61 of 70 Thomas Boxall

M30233 (OSINT) PAGE 17. OPEN SHORTEST PATH FIRST

Page 17

Lecture - Open Shortest Path First
� 2023-11-20 � 0900 � Thanos

17.1 Introduction

Open Shortest Path First (OSPF) is a protocol which is somewhere between the BGP and RIP pro-
tocols. It was developed to overcome the constraints of RIP (slow convergence, routing loops, 15 hop
limitations, untenable for large networks).

OSPF is highly configurable which enables effective management of the bandwidth which is utilised
by routing protocol traffic. There is no hop count limitations, and it has fast convergence with small
routing updates. OSPF is not prone to routing loops, and it’s routing traffic is sent via multicast.
There is also the option to require authentication of routing packets, preventing rouge routers from
advertising unauthorised routes.

OSPF is perceived as a relatively complex to configure protocol, in comparison ro RIP. It runs over
IP only and does not support unequal cost multipath routing, this can however be mitigated through
metric manipulation (where there are multiple paths to route down with unequal costs. As OSPF
uses multicast, we can’t send down all of them). OSPF summarises routes at area borders only, and
may require renumbering of network in order to obtain desired summarisation of routes.

17.2 OSPF
OSPF supports classless addressing and subnetting within the IP protocol. It was designed as an
Internet protocol (which means it provides connectivity between two WANs, unlike RIP), and it deals
with routes learned from the pervasive routing protocol for handling inter-domain routing on the in-
ternet. OSPF support a hierarchical routing environment, which is where the network is structured
like a tree - with the rooter at the root and layers building on from it; this controls what devices can
see what on the network.

An OSPF autonomous system can be divided into multiple areas, which share a controlled amount of
routing information across borders (this works like divide and conquer, reducing the amount of routing
related information that routers exchange between them; resulting in less information to share, faster
processing of it, and ultimately faster convergence). Areas are arranged in a two-level hierarchy. One
of these areas attaches to a central backbone, utilizing a hierarchical IP addressing scheme. OSPF is
very strict about where route summarisation takes place, hence it relies on a well-architected address-
ing scheme. This means the implementation of the protocol needs to be well planned and designed
before it is rolled out.

One of the advantages of OSPF is a reduction in the amount of network bandwidth consumed by
routing updates (it is considerably less chatty than RIP). OSPF is a highly configurable routing

compiled at
2024-01-05 16:03:11Z

62 of 70 Thomas Boxall

M30233 (OSINT) PAGE 17. OPEN SHORTEST PATH FIRST

protocol with a number of design elements that enable precise control over its operation, however this
adds complexity.

17.3 Routing Using OSPF

17.3.1 Steps To Initiate Routing

The steps below show what happens on each router to initiate routing before any packets can be sent.
The network is converged at step 2.

1. Established Neighbours (these are routers through which the router performing this operation
has a common network link with)

2. Established adjacencies with appropriate neighbours and synchronises link state databases (by
upgrading neighbours to adjacencies - the amount of routing traffic is reduced). It is only the
link state information which is shared, not the route information.

3. Run the SPF algorithm

4. Populate the routing table

5. Commence routing

17.3.2 Communication

Rather than broadcasting all information to all routers as RIP does, OSPF sends information to its
directly connected routers only using multicast. Then these routers relay this information out to their
directly connected routers in their area. This allows each router to build its own map of the local
network topology, when the shortest path first (SPF) algorithm runs.

17.3.3 Link State advertising

Each router stores its own link state data within its own Link State Database (LSDB). When all the
routers in a given area share the same LSDB, the network is considered as converged. The LSDB
is populated via the router advertising its links to adjacent neighbouring routers, in a process called
Link State Advertising (LSA). The receiving router can request more information on each LSA. Each
router becomes adjacent to at least one other router in the area, therefore ensuring that every router
receives the LSAs it needs to be able to fully populate its LSDB. The LSAs are sent out via multicast
to minimise their impact on non-interested hosts.

The process of forwarding the LSAs to every other router in the area is known as flooding; once this
process has happened - all adjacent neighbouring routers will have a copy of the source router’s LSDB.
The adjacent neighbours who have just received the update, will add them to their own LSDB before
forwarding that to other adjacent neighbours.

The data included in the LSA is only the router’s ID and the state f their directly connected networks.
This is different to Distance Vector protocols which send network destinations and their distance.
OSPF never sends it’s entire routing table and the Split Horizon rule is applied - not advertising
routing information out via the interface it was received on.

17.3.4 Running SPF

Shortest Path First, is the algorithm used to determine the routes which are the ‘best’ to use. SPF
works by first creating a shortest path tree with the local router at the root of each tree. Each router
on the network repeats this process, creating a view of the network from its own perspective. The
shortest path to each network in the tree is calculated and the routing table is populated. The most

compiled at
2024-01-05 16:03:11Z

63 of 70 Thomas Boxall

M30233 (OSINT) PAGE 17. OPEN SHORTEST PATH FIRST

common metric for OSPF’s path cost is speed (based on bandwidth).

As part of adding SPF data into the routing table, the bandwidth of the links get converted into a
cost value which enables SPF to determine which path to choose. The discovery method for OSPF is
the character O and the administrative cost is 110. The rest of the data is in a similar format to that
of RIP’s.

17.3.5 Maintaining Routes

Once the SPF algorithm has run and populated the route tables, OSPF generates minimal traffic.
However, generally every 10 seconds a HELLO packet is sent between neighbouring routers to keep
their neighbour relationship alive; this also includes receiving a response. The router’s LSDB is
also re-flooded every 30 minutes. LSA’s are also re-sent periodically to ensure every router has a
synchronised LSDB. An accurate LSDB is critical to the proper functioning of the SPF algorithm.
If a router’s LSDB becomes corrupt, the periodic flooding of LSAs ensure any integrity issues of the
database will be short-lived.

17.3.6 Network Failures

If a link fails, the failure is detected through the loss of layer 2 (data link layer) keep-alive packets. This
will normally occur before the loss of HELLO packets from an established neighbour is detected. Once
detected and timing out the link and / or neighbours, the router will notify the adjacent neighbours
that a change has occurred in the state of the link. An LSA is flooded throughout the area, each
router will update it’s LSBD on receipt of this; run the SPF algorithm; then modify the route table
as needed. This process happens fast because the link is timed out quickly and the update packets is
small, and confirmed within an area which gives OSPF the key characteristic of quick Convergence.

17.4 OSPF Areas
OSPF has an autonomous system running the protocol which can be divided into multiple areas.
Areas share routing information with each other, but only their routes and metrics, not topology in-
formation. This is because only the routers bordering the areas need full information for determining
the best path to a network within the corresponding location.

All routers within an area are required to do for packets bound for other areas is to send them to the
‘best’ border router. A border router is a part of the area so it’s part of the topology map of each area.

Dividing a system into areas means that routes learned from another area are not required to have
the SPF algorithm run on them. This method saves on processing power required to run the SPF
algorithm. The fewer the SPF calculations, the faster routing commences.

Through aggregating many subnets into a single network ID, fewer summary LSAs are required to
describe networks within the area - further increasing the efficiencies of the protocol. OSPF summari-
sation only occurs at the border of an area.

compiled at
2024-01-05 16:03:11Z

64 of 70 Thomas Boxall

M30233 (OSINT) PAGE 18. BORDER GATEWAY PROTOCOL

Page 18

Lecture - Border Gateway Protocol
� 2023-11-23 � 0900 � Thanos

18.1 Introduction

Border Gateway Protocol (BGP) was developed in 1989. It is a path vector exterior gateway protocol
which operates on the core layer of the network. This means it is not contained within autonomous
systems, rather it connects autonomous systems together. BGP is used as an inter-domain routing
solution, which connects Internet Service Providers together, such as BT, Virgin, Sky, etc. The current
implementation of BGP (BGP4) was initially ratified as RFC 1771 in 1994, which includes Classless
Inter-Domain Routing (CIDR).

18.2 Characteristics of BGP
BGP uses a composite metric, operates on the exterior of the network and is a path vector protocol.
It is a singlepath protocol which uses multicast to send updates. It operates in a hierarchical structure
with the current version including classless support. BGP is highly configurable, much more than RIP
or OSPF - this can introduce security issues from misconfiguration. BGP is modular which means it
can be made to work the way that you want it to operate.

18.3 Using BGP

18.3.1 When to Use BGP?

With BGP being an inter-autonomous system routing protocol, it is predominantly used by ISPs who
facilitate inter-autonomous system routing. This allows companies to connect to the ISP and use
default routing to forward the packet to another autonomous system, without having to worry about
how it gets there. However - some companies do actually use BGP, especially if they utilise more than
one ISP; using BGP allows them to configure redundant links for auto-failover (where they would
loose connection to one ISP and automatically start using the second ISP).

BGP operates on edge routers which sit on the extremeties of autonomous systems. Packets are
forwarded from edge router to edge router by BGP, and when the packet arrives at the destination
network - OSPF or RIP is used to get the packet to the right device.

18.3.2 Uses of BGP

Some multi-national organisations use BGP to tie their geographically separated locations together.
This process is called peering and would then allow the multiple Autonomous Systems to behave as
though its one single system. OSPF would also be able to achieve this, which would mitigate the
need for BGP. BGP is a complex routing algorithm and as such it should not be used where there is
a viable alternative.

compiled at
2024-01-05 16:03:11Z

65 of 70 Thomas Boxall

M30233 (OSINT) PAGE 18. BORDER GATEWAY PROTOCOL

18.4 How BGP Works

Figure 18.1: Diagram showing where BGP operates between two Autonomous Systems

Figure 18.1 shows how two autonomous systems can be connected together using BGP. The diagram
also shows how autonomous systems have a unique numerical identifier.

BGP is a path vector routing protocol, this means it advertises paths not links however it doesn’t
use distance vector methods similar to what RIP does. BGP uses the full path to the destination by
maintaining a list of autonomous systems that packets must pass through to reach the target network.
BGP uses a number of attributes to learn each route, the use of which allows routing policies to be
implemented.

Routing Policies allow control over what routing prefixes are distributed between interconnected ISPs
and between ISPs and their customers. This allows BGP to be deterministic. This means that an
administrator has granular control over what routes are accepted or rejected. This is controlled by
setting of a preference of one route over another to a particular network. All of this determinism is
underpinned by routing policies, hence these are key to inter-domain routing.

Many ISPs create and enforce Service Level Agreements (SLAs) through routing policies. This gives
them the ability to control exactly who, what and how much traffic can be transmitted through their
network for any given period of time. It is not uncommon for a policy file to be multiple thousand
lines long in a backbone ISP.

It is the ability to shape traffic through path attributes that is the fundamental difference between
BGP and interior routing protocols.

18.4.1 BGP Peer Sessions

BGP operates on BGP enabled routers which form relationships with other BGP enabled routers.
Each route has a Network Layer Reachability Information (NLRI) value. This is composed of the IP
prefix ID and length along with attributes for the route. A BGP router may have a peer relationship
with one or more BGP speaking routers.

18.4.2 BGP Router Discovery

In BGP routing - neighbours are not discovered automatically as in other protocols, rather each
pair of BGP speakers that will exchange routing information must be configured manually. This is

compiled at
2024-01-05 16:03:11Z

66 of 70 Thomas Boxall

M30233 (OSINT) PAGE 18. BORDER GATEWAY PROTOCOL

implemented by design as it means peer relationships are only established between organisations doing
business with one another.

18.4.3 BGP Sessions [beyond the specification]

Peer sessions between BGP speakers commence with the opening of a TCP connection between the
routers, BGP relies on this for reliable communication. The TCP session is opened on Port 179. Upon
initialising of a TCP session, a pair of BGP speakers exchange the entire contents of their Adj-RIBs-
Out Database. After that, only updates are sent and only when the contents of the Adj-RIBs-Out
changes, which is known as triggered updates. The TCP session stays open with keep-alive packets,
which means that if the session is terminated - the initialisation process starts again.

18.4.4 BGP Path Determination [beyond the specification]

BGP does not incorporate the traditional metrics of interior routing protocols. Instead, paths are
chosen for use through Routing Policies. BGP stores all learned routes and their attributes in Adj-
RIB-In which is raw, unprocessed routing data. Routes to be installed and / or advertised go through
a three-part decision process.

1. Calculate the degree of preference for each route in Adj-RIB-In

• Internal Peer: the degree of preference is calculated based on policy information or calcu-
lated on the LOCAL_PREF attribute

• External Peer: the degree of preference is strictly based on policy information

2. Install the best route to each destination into Loc-RIB

• Each feasible route is first checked to see if the net hop router specified in the NEXT_HOP
attribute is reachable

• If the NEXT_HOP is not reachable, the route is dropped
• Then the AS-PATH variable is checked to be sure the route is not looped
• Qualifying routes are then installed to Loc-RIB based on the following criteria: if only one

route is available, it is installed; whereas if there are multiple routes to the same destination
- install the route with the highest degree of preference as calculated in step 1.

• If there are multiple routes to the same destination with the same preference value, a set
of tie-breaking rules are engaged

Tie-break: The algorithm iterates through a series of steps that eliminate routes, the algorithm
terminates when only one route remains.

3. Route Dissemination

• Select which routes in Loc-RIB will be advertised
• This selection process is based on configured routing policy
• Any configured route aggregation also takes place here.

18.5 Autonomous Systems

An Autonomous System (AS) is defined as a collection of networks under common Administrative
Control. A single organisation can be considered an AS. An AS is not determined by any size con-
siderations, rather it provides a common administrative control while sharing a routing strategy. It is
the network responsible of any given AS who takes responsibility of using a suitable routing strategy,
that encompasses all the networks attributed to the AS.

compiled at
2024-01-05 16:03:11Z

67 of 70 Thomas Boxall

M30233 (OSINT) PAGE 18. BORDER GATEWAY PROTOCOL

It is expected that the users of External Gateway Protocols are usually ISPs, these wil include more
than one organisation and therefore more than one Autonomous System. In this case - the ISP is
responsible for routing to and from their customers & any transit traffic passing through to other ASs.

18.5.1 Autonomous System Numbering

In a similar fashion to the Internet Protocol using IP addresses for identification, ASs used in BGP
also need to be identified. This is accomplished through assigning each AS a unique Autonomous
System Number (ASN). The Internet Assigned Numbers Authority (IANA) is the global authority
who is responsible for coordinating the ASNs.

The American ASN authority is ARIN, who use 16-bit numbers ranging from 1 to 65535. Their public
ASN space is 1 to 64511, with every AS connecting to the core of the internet must have a public
ASN. The range 64512 to 65535 are designated as private ASNs. These are utilised for functions such
as private peering between two ISPs, however are never used on the public internet. Obviously, 65535
is not enough ASNs; a review is currently underway to extend these to 32-bit numbers.

compiled at
2024-01-05 16:03:11Z

68 of 70 Thomas Boxall

M30233 (OSINT) PAGE 19. ROUTING SECURITY

Page 19

Lecture - Routing Security
� 2023-12-04 � 0900 � Thanos

19.1 Security Overview
When designing a network, there are three golden rules which have to be considered. These are:

Confidentiality referring to protecting the information from disclosure to unauthorised users

Integrity referring to protecting information from being modified by unauthorised parties

Availability ensures that authorised users are able to access the information when needed

They don’t always just mean the digital security of the network, as the physical security is just as
important. The three golden rules are usually implemented through the three A’s:

Authentication verifies a user is who they say they are

Authorisation gives a user their legitimate access rights and prevents access to other resources

Accounting ensures that user activities can be tracked back to them (enables audits of user activity
to be conducted)

The information stored within a network is worth a lot of money to that business. It is for this reason
that protecting it is imperative.

19.2 Router Security
Different routers will have different value of data travelling through them. The routers at the core of
the internet will have the highest value data while the routers on a small domestic network will have
lower value data. Router security is extremely important because a compromised router: can spy on
you, and all the websites you visit; route you to a phishing website and steal your information; join a
botnet for DDoS attacks; attack all the devices connected to it; change data ‘in-flight’; or block data
all together.

Fresh out of the box, routers generally have pretty poor security. To make the manufacturers lives
easier - all routers produced by them will use the same login IP address, username and password.
Commonly this will be left as http://192.168.1.1 with the username and password both set to
admin. This is not only the case for domestic routers, with a number of enterprise level models also
suffering similar issues. The common security issues only get worse as firmware on routers is often
riddled with backdoors, documented and undocumented ones, which manufactures release updates to
patch however users don’t allow the device to update. Routers are also vulnerable to misconfiguration
and DoS (Denial of Service) attacks. They can also suffer Routing Table Poisoning whereby attackers
will deploy a rogue router within the same network that sends malicious routing table updates; which
then get installed to the network’s legitimate router thus rending it poisoned. This results in traffic

compiled at
2024-01-05 16:03:11Z

69 of 70 Thomas Boxall

M30233 (OSINT) PAGE 19. ROUTING SECURITY

redirection or Man-in-The-Middle attacks.

There are a number of steps which can be followed to protect routers:

• Use a strong admin password and encryption

• Keep the router up-to-date

• Disable unused services

• Run on non-standard ports

• Layered physical security

• Enable authentication between router communications

19.3 Routing Protocol Security

19.3.1 RIPv2 Security

RUP can carry subnet information. It also supports authentication by the means of an up-to 16
character password, which is transmitted in plain text meaning software like WireShark can see it.
RIPv2 also has support for MD5 authentication - whereby it creates an encoded checksum that is
included in the transmitted packet (encoded using Message Digest 5 (MD5)).

19.3.2 OSPFv2 Security

OSPFv2 uses the same cryptographic authentication methods as RIP.

compiled at
2024-01-05 16:03:11Z

70 of 70 Thomas Boxall

	I Operating Systems
	Lecture - Introduction (2023-09-26)
	Lecture - Concurrency (2023-10-03)
	Lecture - Mutual Exclusion (2023-10-10)
	Lecture - Synchronisation & Deadlock (2023-10-17)
	Lecture - Processes and Scheduling (2023-10-31)
	Lecture - Inter-Process Communication (2023-11-07)
	Lecture - File Systems (2023-11-21)
	Async lecture - Virtual Memory (2023-12-02)
	Lecture - Introduction to Architectures (2023-11-28)
	Lecture - Modern Processors (2023-12-05)

	II Internetworking
	Lecture - Networking Services: DNS, DHCP, etc (2023-09-25)
	Lecture - IP Addresses & Subnetting (2023-10-02)
	Lecture - VLSM and Supernetting (2023-10-16)
	Lecture - Supernetting & CIDR (2023-10-30)
	Lecture - Internet Routing (2023-11-06)
	Lecture - Routing Information Protocol (2023-11-13)
	Lecture - Open Shortest Path First (2023-11-20)
	Lecture - Border Gateway Protocol (2023-11-23)
	Lecture - Routing Security (2023-12-04)

