
University of Portsmouth
BSc (Hons) Computer Science
Second Year

Discrete Mathematics and Functional Programming (DMAFP)
M21274
January 2024 - June 2024
20 Credits

Thomas Boxall
up2108121@myport.ac.uk

M21274 (DMAFP) CONTENTS

Contents

I Discrete Maths 2

1 Lecture - Sets (2024-01-23) 3

2 Lecture - Relations (2024-01-30) 8

3 Lecture - Functions (2024-02-06) 11

4 Lecture - Logic I: Introduction to Propositions & Logic (2024-02-13) 13

5 Lecture - Logic II: Quantified Statements (2024-02-20) 18

6 Lecture - Methods of Proof (2024-02-27) 22

7 Lecture - Graphs: An Introduction (2024-03-12) 27

8 Lecture - Walks, Trails, Paths (2024-03-19) 31

9 Lecture - Trees (2024-04-16) 38

10 Lecture - Network Models and Digraphs (2024-04-23) 49

11 Lecture - Connectivity and Cuts (2024-04-30) 56

II Functional Programming 59

12 Lecture - Introduction to Functional Programming (2024-01-22) 60

13 Lecture - Introduction To Functional Programming II (2024-01-29) 62

14 Lecture - Pattern Matching & Recursion (2024-02-12) 64

15 Lecture - Tuples, Strings & Lists (2024-02-12) 66

16 Lecture - List Patterns and Recursion (2024-02-19) 70

17 Lecture - Functions as Values (2024-02-26) 72

18 Lecture - Algebraic Types (2024-03-11) 76

19 Lecture - Input / Output (2024-03-18) 80

20 Lecture - Functional Programming in Python (2024-04-22) 85

compiled at
2024-05-07 17:24:43+01:00

1 of 88 Thomas Boxall

Part I

Discrete Maths

2

M21274 (DMAFP) PAGE 1. SETS

Page 1

Lecture - Sets
� 2024-01-23 � 17:00 � Janka

1.1 Introduction
Sets underpin maths and Computer Science. A set is a collection of objects, which are called the
elements (also known as members of the set). For example, a set of the numbers 1, 3, 8; or the
collection of students in a class born in March. There are two characteristics of sets:

1. There are no repeated occurrences of elements

2. There is no particular order of the elements

1.2 Set Notation
The elements of a set are enclosed in braces with their names being denoted by a letter, for example:

A = {1, 2, 3}, C = {Portsmouth,Brighton, London}

There are two ways that we can describe the members of a set. We can list the elements which is
mainly used for finite sets, for example:

A = {3, 6, 9, 12}

Alternatively, we can specify a property that all the elements in the set have in common. The ‘|’
character is read ‘such that’, sometimes ‘:’ is used in it’s place. For example:

B = {x|x is a multiple of 3 and 0 < x < 15}

We can also use three dots to informally denote a sequence of elements that we don’t wish to write
down, for example:

C = {1, . . . , 10}

1.2.1 Sets of Numbers

There are some reserved letters to denote specific sets of numbers in maths. These are shown below:

• N (or N) is used for the set of natural numbers (integers >= 0). N = {0, 1, 2, 3, 4, . . .}

• Z (or Z) is used for the set of integers. N = {. . . ,−1, 0, 1, . . .}

• Q (or Q) is used for the set of rational numbers (number which can be expressed as a quotient
or fraction). Q = {0, 1

2
,
1

3
,
1

4
, . . .}

• R (or R) is used for the set of real numbers. R = {. . . ,−1, 0,
1

2
, . . .}

compiled at
2024-05-07 17:24:43+01:00

3 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 1. SETS

1.2.2 Elements of a Set

We can use the ∈ symbol to denote if an element is a member of a given set. For example, if x is a
member of S - then we can say:

x ∈ S

The symbol /∈ denotes an element is not a member of a given set. For example, if y is not a member
of S - then we can say:

y /∈ S

1.2.3 Many Ways to Say The Same Thing

There are several ways of describing the same set, for example for the set S of odd integers:

S = {. . . ,−5,−3,−1, 1, 3, 5, . . .}
= {x|x is an odd integer }
= {x|x = 2k + 1 for some integer k}
= {x|x = 2k + 1 for some k ∈ Z}
= {2k + 1|k ∈ Z}

The phrase “for some [integers K]”, means “for all [integers k]”

1.2.4 Empty Sets

Where a set has no elements, it is called an empty set or null set. It’s denoted with the ∅ symbol, for
example:

∅ = {}

1.2.5 Finite & Infinite Sets

If the number of elements in the set is fixed (for example when counting the elements at a fixed rate
for a set amount of time), then the set is finite. If the set X is finite, then we call |X| the cardinality
of X therefore:

|X| = number of elements in X

If the counting never stops then X is an infinite set.

1.2.6 Subsets

A subset is where one set’s elements are entirely present in another set. There are three conditions
we need to know about:

• A ⊆ B: A is a subset of B therefore every element in A is also in B.

• A * B: A is not a subset of B.

• A ⊂ B: A is a proper subset of B, therefore B has at least one additional element which is not
in A.

1.2.7 Equality of Sets

Two sets are equal if they have exactly the same elements. This is denoted by writing A = B. Where
A = B, the following conditions are also true:

• A ⊆ B for every a if a ∈ A, then a ∈ B

• B ⊆ A for every b if b ∈ B, then b ∈ A

compiled at
2024-05-07 17:24:43+01:00

4 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 1. SETS

1.3 Operations on Sets
Sets can have operations performed on them - this will change something about them.

1.3.1 Intersection

The intersection of two sets A and B is defined as:

A ∩B = {x|x ∈ A and x ∈ B}

This is the set of elements which appear in both sets only. If we take a Venn Diagram with a set on
either side - its the overlapped elements which would be returned from an intersection operation. For
example if A = {a, b, c} and B = {c, d} then A ∩B = {c}.

A B

Figure 1.1: A ∩B

1.3.2 Disjoint

If an intersection returns no elements, then the two sets are disjoint. This is shown by:

A ∩B = ∅

1.3.3 Union

The union of the two sets A and B is defined as:

A ∪B = {x|x ∈ A or x ∈ B}

This is the set of elements which are in either A or B, this means elements which appear in both are
returned. For example, if A = {a, b, c} and B = {c, d} then A ∪B = {a, b, c, d}.

A B

Figure 1.2: A ∪B

1.3.4 Difference

The difference between two sets, A and B is defined as:

A \B = {x|x ∈ A or x ∈ B}

This is the set of elements which are in A but not in B, so could be represented as A−B. Note that
A \B 6= B \A.

compiled at
2024-05-07 17:24:43+01:00

5 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 1. SETS

A B

Figure 1.3: A \B

A B

Figure 1.4: B \A

1.3.5 Counting Elements In a Set

If we take A and B to be finite sets, we can calculate the number of elements in the union of A and
B. The correct way to count this is as follows:

|A ∪B| = |A|+ |B| − |A ∩B|

We have to minus |A ∩ B| from the sum because otherwise it is as though we are counting it twice
due to the fact that we are summing the total number of elements in A and B.

1.4 Complement

If we consider that all subsets are the subset of a particular set, U for example (the universe of
discourse), then the difference U \ A is called the complement of A is shown as either A or A′. For
example:

A′ = {X|x ∈ U and x /∈ A}

1.5 Basic Set Properties
Sets have a number of basic properties - many of these are the same as that for Boolean Expressions

• A ∪ ∅ = A

• A ∩ ∅ = ∅

• A ∪A = A

• A ∩A = A

• Commutative

– A ∪B = B ∪A

– A ∩B = B ∩A

• Associative

– (A ∪B) ∪ C = A ∪ (B ∪ C)

– (A ∩B) ∩ C = A ∩ (B ∩ C)

• Distributive

– A ∩ (B ∩ C) = (A ∩B) ∪ (A ∩ C)

– A ∪ (B ∪ C) = (A ∪B) ∩ (A ∪ C)

• de Morgan’s

– (A ∩B)′ = A′ ∪B′

– (A ∪B)′ = A′ ∩B′

compiled at
2024-05-07 17:24:43+01:00

6 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 1. SETS

1.6 Power Set

A power set is the collection of all subsets of a set, S which is denoted by P (S). For example, if
S = {a, b, c} then:

P (S) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

1.7 Partition
A partition of the set S is a collection of non-empty subsets of set S where every element form S
belongs to exactly one member of S. This means that the sets are mutually disjoint and that the
union of all the sets in the collection results in the original set, S. For example, if S = {a, b, c, d, e, f}
then {{a, e}, {c}, {f, d}, {b}} is a partition of S.

compiled at
2024-05-07 17:24:43+01:00

7 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 2. RELATIONS

Page 2

Lecture - Relations
� 2024-01-30 � 17:00 � Janka

2.1 Ordered Pairs
An ordered pair of elements is a group of two elements which are in a specific order. They are written
as (a, b) and the order matters - this means (a, b) is distinct from the pair (b, a). Note that ordered
pairs use the brackets () while sets use curly braces {}

2.2 Cartesian Product
The Cartesian Product of two sets is the set of all ordered pairs where the first element is taken from
set 1 and the second element from set 2. The formal definition is as follows:

A×B = {(a, b)|a ∈ A and b ∈ B}

For example - if X = {1, 2, 3} and Y = {a, b}, then

X × Y = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

2.3 Relations

A relation is the set of subsets from a cartesian product. For example, if we take A = {a, b, c, d, e}
and B = 1, 2, 3 then:

R1 = {(a, 1), (b, 1), (c, 2), (c, 3)}
R2 = {(a, 3), (a, 1), (c, 2), (c, 1), (b, 2)}

R1 and R2 are both examples of Binary relations from A to B.

2.3.1 Describing Relations

To describe a relation, we could list all of its elements, however this can be very long and obtuse so
it’s better & more common practice to use “the characteristics of their elements”.

2.3.2 Relations On A Set

A relation on a set is where both sets are equal. For example A = B then a relation on A is a relation
from A to A, hence a subset of A×A.

For example, let R be the relation on A = {1, 2, 3, 4} as defined by:

(x, y) ∈ R if and only if x divides y, for all x, y ∈ A

Then we can conclude that R is:

R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}

compiled at
2024-05-07 17:24:43+01:00

8 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 2. RELATIONS

2.4 A Digraph
We can use a digraph to picture a relation on a set. An example is shown below:

1 2

34

The dots (vertices) represents the elements of A = {1, 2, 3, 4}. If the element (x, y) is in the relation,
an arrow (directed edge) is drawn from x to y.

R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}

2.4.1 Reflexivity

A relation is reflexive where for all elements in the set - there is an ordered pair in which both elements
are the same. For example the set A = {1, 2, 3, 4} has the following relation:

R = (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)

Of which (1, 1) and (2, 2) are examples of reflexivity. This can be seen on the following digraph, the
red arrows are the ones which display the reflexivity.

1 2

34

2.4.2 Symmetry

A relation is symmetrical where (x, y) ∈ R and (y, x) ∈ R. If the condition is not true, then we do
not have symmetry.

compiled at
2024-05-07 17:24:43+01:00

9 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 2. RELATIONS

1 2

34

2.4.3 Transitivity

For a binary relation, R on set A; R is transitive if and only if for all x, y, z ∈ A if (x, y) ∈ R and
(y, z) ∈ R and (x, z) ∈ R. We initially assume that a relation is transitive and try to disprove it; if we
are unable to disprove it then the relation is transitive. In the event that there is only one element in
the relation - the relation will always be transitive.

1 2

34

2.4.4 Equivalence

Where a relation is reflexive, symmetric and transitive - it is classed as an equivalence.

2.4.4.1 Equivalence Class

To be continued.

compiled at
2024-05-07 17:24:43+01:00

10 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 3. FUNCTIONS

Page 3

Lecture - Functions
� 2024-02-06 � 17:00 � Janka

A function can be described in two ways. The mathematical definition is that “a function is a special
type of relation in which a single input will have at most one output”. The alternative definition of a
function is that it is a mysterious black box which takes an input and returns and output. The same
function, with the same input will always return the same output.

If we take A and B to be nonempty sets, then: A is a (total) function f from A to B, f : A → B, is
a relation from A to B such that

for all x ∈ A there is exactly on element in B, f(x)

associated with x by relation f . Note that the word ‘total’ is used to describe the above function
which means that every input has a defined output. The function f : Z → Z which is defined by
f(x) = 2x is also an example of a total function.

It is also possible to have a ‘partial’ function, this is where some of the inputs do not have defined
outputs. For example the function f(1x) where x = 0, would be undefined therefore the function is
classed as ‘partial’.

3.1 Describing A Function
There are a few different ways in which a function can be described.

3.1.1 By A Formula

This is the most common method used. The function f from N → N that maps every natural number
x to its cube x3 can be described as:

f(x) = x3

3.1.2 By All Possible Associations

Whilst this is a valid method, it will generally not be used for efficiency reasons. The function g from
A = {a, b, c} to B = {1, 2, 3} would be shown as:

g(a) = 1, g(b) = 1, g(c) = 2

3.2 Domain, Co-Domain & Range
The domain of a function is the set of all input values for which there is a defined output. For example
if we let f : A → B then the subset D ⊂ A of all elements for which f is defined is the domain. In
the case of a total function, D = A and in the case of a partial function, D ⊆ A

compiled at
2024-05-07 17:24:43+01:00

11 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 3. FUNCTIONS

The co-domain of a function is the set of all possible output values; not just the ones which map to
an input. For example, if we let f : A → B then the set B is the co-domain.

The range (also sometimes known as the image) of a function is the set of elements in the co-domain
which map to an input. For example, if we let f : A → B then the range is denoted by range(f). The
range can also be expressed as:

range(f) = {f(x)|x ∈ A}

3.3 Properties of Functions
Functions have a number of properties.

3.3.1 Injective

The function f : A → B is injective (or one-to-one) if there is only one input that maps to each
output. It can mathematically be defined as:

for all x, y ∈ A if x 6= y ⇒ f(x) 6= f(y)

3.3.2 Surjective

A function f : A → B is surjective (or onto) if the range(f) is the co-domain B. It can mathematically
be defined as

for all y ∈ B there exists x ∈ A such that f(x) = y

A function which is not onto is into.

3.3.3 Bijective

A function f : A → B is bijective (or one-to-one correspondence) if it is both injective and surjective.

3.4 Composite Functions
A new function can be constructed by combining other simpler functions in some way. If we let
f : A → B and g : B → C be functions. The composition of g with f is the function denoted by
g ◦ f : A → C and defined by:

(g ◦ f)(x) = g(f(x)) for all x ∈ A

(g ◦ f)(x) = g(f(x)) is read as g of f , which means do f first then do g.

3.5 Inverse Functions

An inverse function is where the output of function f can be fed into the input of function f−1 to get
the original input of f . This is mathematically defined as: f : X → Y is a bijective function, then
there is an inverse function f−1 : X → Y that is defined as:

f−1(y) = x if and only if f(x) = y

compiled at
2024-05-07 17:24:43+01:00

12 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 4. LOGIC I: INTRODUCTION TO PROPOSITIONS & LOGIC

Page 4

Lecture - Logic I: Introduction to
Propositions & Logic
� 2024-02-13 � 1700 � Janka

4.1 Reasoning
Reasoning is something that we are introduced to doing from a young age. Younger children will
continually ask “why?” as they attempt to make sense of the world while growing up; as they grow
older they will generally only want the facts however. Logic is the discipline which deals with the
method of reasoning:

• in mathematics to prove theorems

• in computer science to verify the correctness of programs and to prove some theorems

• in the natural and physical sciences to draw conclusions from experiments

• and in our everyday lives to solve a multitude of problems!

Over time, people come to understand that the following statement is how logic & reasoning works:

“If X then Y ” is true and “X” is true ⇒ so “Y ” must be true

4.2 Propositions

A proposition it a statement (which is a declarative sentence) that can either be true or false; however
not both. A proposition will be exact, not wishy-washy. For example - 3− x = 5 is not a proposition
as it has an unknown value of x; however “The earth is flat” is a proposition as it can, and only can,
categorically be True or False.

4.2.1 Propositional Variables

Propositions can be quite long. Mathematicians like efficiency, therefore they apply a single letter
variable to a propositional statement to make their lives easier. The letters p, q, r, . . . are used to
denote propositional variables.

Statement can be combined with logical connectives to obtain compound statements. For example
p and q

compiled at
2024-05-07 17:24:43+01:00

13 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 4. LOGIC I: INTRODUCTION TO PROPOSITIONS & LOGIC

4.3 Logical Connectives
Logical Connectives are used to combine propositional statements together; they are very similar to
Boolean Algebra1. The truth value of a compound statement depends only on:

• the truth values of the statements being combined

• the types of connectives being used

4.3.1 Negation (not)

If p is a statement, the negation of p is the statement not p, denoted by ¬p. The truth table of
negation is shown below:

p ¬p

T F

F T

4.3.2 Conjunction (and)

If p and q are statements, the conjunction of p and q is the compound statement p and q, as denoted
by p ∧ q

p q p ∧ q

T T T

T F F

F T F

F F F

4.3.3 Disjunction (or)

If p and q are statements, the (inclusive) disjunction of p and q is the compound statement p or q as
p ∨ q

p q p ∨ q

T T T

T F T

F T T

F F F

4.3.4 Conditional Proposition (implication)

If p and q are statements then the compound statement “if p then q” dented p → q (or p ⇒ q) is called
implication. The hypotheses in the statement is p and the conclusion is denoted by q.

1Covered in A-Level Electronics, A-Level Computer Science, 1st Year ArchOS Module

compiled at
2024-05-07 17:24:43+01:00

14 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 4. LOGIC I: INTRODUCTION TO PROPOSITIONS & LOGIC

p q p → q

T T T

T F F

F T T

F F T

4.3.5 Conditional Proposition (bidirectional)

If p and q are statement, the compound statement “if and only if” (abbreviated to iff), denoted by
p ⇔ q, is called the biconditional of p and q.

p q p ⇔ q

T T T

T F F

F T F

F F T

4.4 Truth of Compound Properties
It is possible to combine the truth tables for single logical connectives to make more complicated truth
tables. In similar fashion to Algebraic & standard numeric expression evaluation - there is a hierarchy
of evaluation, as seen below (listed highest to lowest):

1. brackets

2. negation (¬)

3. conjunction (∧)

4. disjunction (∨)

5. implication (→)

6. bidirectional (↔)

For connectives of equal priority - work from left-to-right through them.

4.5 Special Conditions

4.5.1 Tautology

A statement that is true for all possible values of its propositional variables is called a tautology. For
example p : p ∨ ¬p is a tautology. In a truth table, the final column (where the output is) will always
be false.

4.5.2 Contradiction

A statement that is false for all possible values of its propositional variables is called a contradiction.
For example, any proposition p : p ∧ ¬p is a contradiction. In a truth table, the final column (where
the output is) will always be false.

compiled at
2024-05-07 17:24:43+01:00

15 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 4. LOGIC I: INTRODUCTION TO PROPOSITIONS & LOGIC

4.5.3 Contingency

A statement that can be either true or false depending on the truth values of its propositional variables
is called a contingency. For example the proposition “Murray will win the Wimbledon next year” us
a contingency because the truth of the statement is dependent on the propositional variable.

4.5.4 Contrapositive

The contrapositive of a conditional statement p → q is ¬q → ¬p. The conditional statement is logically
equivalent to its contrapositive.

4.6 Logical Equivalence
Two statements are said to be logically equivalent, ≡, if and only if they have identical truth values for
each possible value of their statement variables. Logical equivalence corresponds to = with numbers.

Shown below are the rules of Logical Equivalence. There is not a requirement to memorise these as it
should be possible to derive them in the exam when required. Note that they are the same as Boolean
algebra’s laws, except with funky symbols.

• p ∧ p ≡ p

• p ∨ p ≡ p

• p ∧ T ≡ p

• p ∧ F ≡ F

• p ∨ T ≡ T

• p ∨ F ≡ p

• ¬(¬p) ≡ p

• p ∨ (¬p) ≡ T

• p ∧ (¬p) ≡ F

• p ∧ q ≡ q ∧ p (commutativity)

• p ∨ q ≡ q ∨ p (commutativity)

• (p ∨ (q ∧ r)) ≡ ((p ∨ q) ∧ (p ∨ r)) (distributivity)

• (p ∧ (q ∨ r)) ≡ ((p ∧ q) ∨ (p ∧ r)) (distributivity)

• p → q ≡ (¬p ∨ q)

• ¬(p ∨ q) ≡ ((¬p) ∧ (¬q)) (De Morgan’s Law)

• ¬(p ∧ q) ≡ ((¬p) ∨ (¬q)) (De Morgan’s Law)

4.6.1 Example of logical equivalence proof

Question. Prove that (p → q) ∨ (p → r) ≡ p → (p ∨ r)

(p → q) ∨ (p → r) ≡
≡ (¬p ∨ q) ∨ (¬p ∨ r) logical equivalence law
≡ ¬p ∨ q ∨ ¬p ∨ r all are `or′ so remove brackets
≡ ¬p ∨ q ∨ r get rid of second¬p
≡ ¬p ∨ (q ∨ r) add brackets in
≡ p → (q ∨ r) logical equivalence law again

compiled at
2024-05-07 17:24:43+01:00

16 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 4. LOGIC I: INTRODUCTION TO PROPOSITIONS & LOGIC

4.7 Necessary and Sufficient Condition
A necessary condition is a condition such that statement B cannot be true without statement A being
true. However it is possible for statement A to be true to even if statement B is not true.

A sufficient condition is a condition such that knowing statement A is true guarantees that statement
B is true.

A statement (A) is said to be “necessary and sufficient” for the statement B when B is true if and
only if A is also true.

compiled at
2024-05-07 17:24:43+01:00

17 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 5. LOGIC II: QUANTIFIED STATEMENTS

Page 5

Lecture - Logic II: Quantified
Statements
� 2024-02-20 � 1700 � Janka

5.1 Propositional Logic: A Recap
As we saw last week, Propositional Logic applies to a declarative statement where the basic proposi-
tions are either True or False. “Mr Bean is a Mathematical Major” is an example of a proposition,
however “He is a Mathematical Major is not” because it depends on the value of “he”.

The sentence “All students sitting in this class in the first three rows are mathematical majors” ia a
more complex example however. To fully discover whether this is a proposition or not, we would need
to analyse each individual atomic propositions; which would be to analyse all individuals sitting in
the first three rows. For example:

• “Bella is a mathematical major”

• “Joe is a mathematical major”

• “Fred is a mathematical major”

This is obviously a lot of work and mathematicians don’t like to over-exert themselves, so there’s a
method which can be use to simplify this predicament, called Predicate Logic.

5.2 Predicate Logic

A predicate (or propositional function) is a statement containing one or more variables. If values from
a given set (domain) are assigned to all the variables, the resulting statement is a proposition. For
example:

• P (n) : n2 + 2n is an odd integer (domain Z) is a predicate because when n is substituted in for
an integer, we have a proposition.

• S(n) : The student passed the exam (domain of all students sitting in this class) is a predicate
because when n is substituted for a student - we have a proposition.

• Test(x, y, z) : x < y+ z (domain of all integers) is a predicate because once x, y and z have been
substituted for an integer - we have a proposition as the mathematical expression can either be
True or False.

• Distance(x, y) : whether the distance between the towns x and y is less than 300km (domain of
all towns in the UK) is a predicate because once we have substituted x and y for two different
Towns then we will have a proposition (as this can either be True or False).

compiled at
2024-05-07 17:24:43+01:00

18 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 5. LOGIC II: QUANTIFIED STATEMENTS

From programming, we are familiar with If and While statements. The condition which powers these
are in fact predicates (if p(y) then; or while p(y) do).

5.2.1 Changing a Predicate to a Proposition

1. Assign values (from the domain) to all their variables
For example: “x is divisible by 5” (the domain N) would be converted through substituting x
for a number (i.e 35) then this would result in either True or False (i.e True).

2. to add quantifiers

5.3 Quantifiers
Quantifiers are words that refer to quantities such as “some” or “all”. Most of the statements in Maths
and Computer Science use terms such as “for every” or “for some”.

For example: “For all x ∈ N, x is divisible by 5” can use a different quantifier and be be written as
“There exists x ∈ N such that x is divisible by 5”. From this - we know that there are two quantifiers:

5.3.1 Universal Quantifiers

The symbol ∀ (an upside down A) is called the universal quantifier; which has the meaning “for all”
or “for each”.

The formal definition of the universal quantifier is as follows: For a predicate p(x) with domain D,
the statement:

“for every x from domain D, p(x)”

may be written as ∀x ∈ D p(x).

For example:

• Example 1: “All DMAFP students are happy” can be re-written as:
Let D be the set of all DMAFP students, then

∀x ∈ D,x is happy

• Example 2: Let S = {1, 2, 3, 4, 5, 6} and consider the statement

∀x ∈ S, x2 ≥ x

• Example 3: ∀x ∈ R, x2 ≥ x

5.3.1.1 True Statements with ∀

We know the fact: “The statement ∀x ∈ D p(x) is true if p(x) is true for every x ∈ D”. To prove a
quantified statement including ∀ to be true, we have to show the truth of the each individual element
of the domain to be true.

• Example 1: “Let D be the set of all DMAFP students, then ∀x in D, x is happy”, is a statement.
It is true if and only if every student answers ‘Yes’.

• Example 2: “Let S = {1, 2, 3, 4, 5, 6}”. The statement ∀x ∈ S, x2 ≥ x is true because 12 ≥ 1,
22 ≥ 2, . . ., 62 ≥ 6

compiled at
2024-05-07 17:24:43+01:00

19 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 5. LOGIC II: QUANTIFIED STATEMENTS

5.3.1.2 False Statements with ∀

We know the fact: “The statement ∀x ∈ D p(x) is false if p(x) is false for at least one x ∈ D”. To prove
that a quantified statement including ∀ to be false, we have to show at least one counterexample.

• Example 1: “Let D be the set of all DMAFP students, then ∀x in D, x is happy”, is a statement.
It is false if and only if there is at least one unhappy student.

• Example 3: The statement “∀x ∈ R, x2 ≥ x” is not true. This is because there exists x ∈ R for
which x2 < x for example where x = 1

2 . Therefore the statement is false.

5.3.2 Existential Quantifier

The symbol ∃ (a backwards E) is called the existential quantifier; which has the meaning “there exists”.

The formal definition of an existential quantifier is as follows: For a predicate p(x) with the domain
D:

“there exists an x from the domain D such that p(x)”

may be written as ∃x ∈ D such that p(x).

For example:

• Example 1: “There is a happy DMAFP student”. can be rewritten:
Let D be the set of all DMAFP students then:

∃x ∈ D such that x is happy

• Example 2: Let S = {1, 2, 3, 4, 5, 6} and consider the statement

∃x ∈ S such that x2 ≥ x

• Example 3: ∃x ∈ N such that x2 > x

5.3.2.1 True Statements with ∃

We know the fact: “The statement ∃x ∈ D such that p(x) is true if p(x) is true for at least one x ∈ D”
To prove a quantified statement including ∃ to be true, we have to find one proposition for which the
predicate is true.

• Example 1: “Let D be the set of all DMAFP students, the statement ∃x ∈ D such that x is
happy.” To prove this is true - we only need to find one student who is happy.

• Example 3: The statement ∃x ∈ R such that x2 ≥ x can be proved as true because it is true
where x = 2.

5.3.2.2 False Statements with ∃

We know the fact that “The statement ∃x ∈ D” such that p(x) is false if p(x) is false for all x ∈ D.
To prove a quantified statement including ∃ to be false, we have to prove that it can never be true.
For a small, finite domain - this can be brute forced; or for a large (or infinite) domain - this has to
be proved logically.

• Example n: The statement ∃x ∈ Z such that x2 < −2017 is false because there are members of
Z which when squared, are bigger than −2017

compiled at
2024-05-07 17:24:43+01:00

20 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 5. LOGIC II: QUANTIFIED STATEMENTS

5.4 Negation of Quantified Statements
When negating a quantified statement, it is not as simple as one might imagine. You do not simply
add (or remove) the word ‘not’ and hope for the best; rather you negate components and from here a
new statement will be birthed.

For example, taking the statement “There exists a fluffy cat”, to negate this - we would need to write
“all cats are not fluffy”. Note how this has gone from an ‘exists’ quantifier to a ‘for all’ quantifier.
Alternatively, we can take the statement “All cats are fluffy”, which negated would be “There exists
a cat that is not fluffy”. Again, note that the quantifier has been changed.

Now for some mathematical examples rather than (un)fluffy cats:

The negation of a statement of the form ∀x ∈ D, Q(x) is logically equivalent to a statement of the
form ∃x ∈ D such that ¬Q(x). Symbolically:

¬(∀x ∈ D,Q(x)) ≡ ∃x ∈ D such that ¬Q(x)

The negation of a statement of the form ∃x ∈ D such that Q(x) is logically equivalent to a statement
of the form ∀x ∈ D,¬Q(x) Symbolically:

¬(∃x ∈ D such that Q(x)) ≡ ∀x ∈ D,¬Q(x)

5.5 Nested Quantifiers
Multiple quantifiers such as ∀x∃y, ∃x∀y, . . . are said to be nested quantifiers.

In actual English - you would see this such as something along the lines of “There is a student solving
every exercise of the tutorials”. However! This sentence is ambiguous as it would have at least two
different meanings:

• There is one student who solves all the exercises of the tutorials

• For any particular exercise, there is a student who solves that exercise

5.5.1 Example

Let P (x, y) be the property “the student x solves the exercise y, S - the set of students, E - the set
of all exercises of the tutorials.”

• ∃x ∈ S ∀y ∈ E such that x and y satisfy property P (x, y) is a statement.
It is true if there is (at least) one student who solves all the exercises of the tutorials.

• ∀y ∈ E ∃x ∈ S such that x and y satisfy property P (x, y) is a statement.
It is true if each exercise is solved by at least one student

compiled at
2024-05-07 17:24:43+01:00

21 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 6. METHODS OF PROOF

Page 6

Lecture - Methods of Proof
� 2024-02-27 � 1700 � Janka

6.1 What is a Proof?
A Mathematical Proof is a deductive argument for a mathematical statement, showing that the stated
assumptions logically guarantee the conclusion. Mathematical Proofs are carefully reasoned and there
are a number of different ways we can deduce one.

6.1.1 Formal Example

Theorem 6.1.1. Prove that for all integers m and n, if m is odd and n is even, then m+ n is odd.

An argument (theorem) is a finite collection of statements (p1, p2, . . . , pn) called premises (hypothesis)
followed by a statement q called the conclusion.

(p1 ∧ p2 ∧ . . . ∧ pn) ⇒ q

In the above, the premises are “m, n, integers, m is odd, n is even” and the conclusion is “m + n is
odd”. The argument is valid (or the theorem holds) if, whenever p1, p2, . . ., pn are all true, then q is
also true.

6.1.2 Methods of Proof

To “prove a theorem” means to show that if all premises are true then the conclusion is also true.

m,n are integers

m is odd, n is even

. . .

Can we prove that m+ n is odd?

We have a number of different techniques which we can use. Which of the following to choose depends
on the problem and experience:

1. A direct proof

2. A proof by contradiction

3. A proof by contrapositive

4. A proof by mathematical induction

compiled at
2024-05-07 17:24:43+01:00

22 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 6. METHODS OF PROOF

6.2 A Direct Proof

In a direct proof, we start with the hypothesis of a statement (premises) and make one deduction after
another until we reach the conclusion. Theorems which are able to be proved are often of the form:

p (hypothesis) ⇒ q (conclusion)

While proving the proof, we can use:

• Previously Proven Facts

• Definitions

• Known basic properties

Our task is to prove that then q is also true.

6.2.1 Our First Theorem

It’s time to prove our first theorem, how exciting!

Theorem 6.2.1. For all integers m and n, if m is odd and n is even, then m+ n is odd.

As we are proving this using a direct proof, we assume that the hypothesis is true and derive the
conclusion. We start doing this by realising some properties of odd and even numbers.

Proof. An integer r is even if and only if there exists an integer k such that r = 2k. (This is the
basic definition of an even number, no room for disagreement here!)

Similarly, an integer r is odd if and only if there exists an integer k such that r = 2k + 1

To apply these derivations to our theorem:

m is odd ⇒ there exists an integer k such that m = 2k + 1

n is even ⇒ there exists an integer l such that n = 2l

We can use maths to show that the sum is:

m+ n = (2k + l) + 2l

= 2(k + l) + 1

∴ m+ n is odd. �

Note the black square (�) on the right above at the end of the proof. This is stands for QED which
stands for “Quod Erat Demonstrandum”, which stands for “what was to be demonstrated” which
stands for “boom done, there I proved it, I’m leaving now”.

6.3 Proof by Contradiction (indirect proof)
As we know there are only, and can only, be two options for the truth value of a conclusion: True or
False. If supporting that the premises are true and the conclusion is false, we are able to arrive at
a contradiction (a conclusion that is contradictory to our assumptions or something obviously untrue
like 1 = 0) ⇒ our conclusions must be true!

While proving the proof, we can use:

• Previously known facts

compiled at
2024-05-07 17:24:43+01:00

23 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 6. METHODS OF PROOF

• Definitions

• Known basic properties

Our task is to prove a contradiction, which is done through proving that q is true (assuming that p is
true).

6.3.1 Our Second Theorem

Theorem 6.3.1. For every n ∈ N, if n2 is even, then n is even

We can rewrite this as:

n2 is even, n ∈ N ⇒ n is even

We can then take our hypothesis to be to be that n2 is even while n is a natural number; and a false
conclusion to be n is not even, hence n is odd. We want to prove any contradiction (which could be
r ∧ ¬r for a proposition r).

Proof. Since we take that n is odd, there exists k ∈ N such that n = 2k + 1. We can now derive the
following:

n2 = (2k + 1)2

= 4k2 + 4k + 1

= 2(2k2 + 2k) + 1

This means that n2 is odd.

Now n2 is even (the hypotheses) and n2 is odd (which we have just proved). This is a crazy sit-
uation, an impossible contradiction! As we have found a contradiction ⇒ the conclusion must be true!

∴ for every n ∈ N if n2 is even, then n is even. �

6.4 Proof by Contrapositive (indirect proof, again)
The contrapositive of the condition proposition p → q is the proposition ¬q → ¬p. Note that the
conditional proposition and its contrapositive are logically equivalent

p → q ≡ ¬q → ¬p

To prove a statement by contrapositive, we prove that the contrapositive statement is a direct proof
and conclude that the original statement is true. This means that instead of the original theorem,
p → q, we prove by a direct proof the contrapositive theorem ¬q → ¬p.

While proving the proof, we can use

• previously proven facts

• definitions

• known basic properties

Our task is to prove that ¬p is true. In this way we prove that ¬q → ¬p and because of p → q ≡
¬q → ¬p necessarily p → q must be true as well (meaning that the theorem p → q is valid).

compiled at
2024-05-07 17:24:43+01:00

24 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 6. METHODS OF PROOF

6.4.1 Our Second Theorem (again)

Theorem 6.4.1. For every n ∈ N, if n2 is even then n is even.

Our contrapositive statement is: “For every n ∈ N if n is not even, then n2 is not even”. We can use
the fact “An integer is not even, if and only if, it is odd” to derive our contrapositive:

Contrapositive. For every n ∈ N, if n is odd then n2 is odd.

We are now able to prove the contrapositive statement using a direct proof by proving that n2 is odd.

Proof. Since n is odd, there exists k ∈ N such that n = 2k + 1 We can now derive the following:

n2 = (2k + 1)2

= 4k2 + 4k + 1

= 2(2k2 + 2k) + 1

Therefore n2 is odd.

This means that the contrapositive statement is true and by logical equivalence also the theorem:

“For every n ∈ N, if n2 is even, then n is even”

is valid �

6.5 Mathematical Induction
Mathematical Induction is one of the most basic methods of proof. It is a useful technique to use
to establish the truth of a statement about natural natural numbers. It is a method for proving a
statement (given in the form of a proposition) P (n) is true for every natural number, n, and that the
infinitely many cases P (0), P (1), P (2), P (3), . . . all hold. This is done in two stages.

1. Proving a simple case (the base case), which proves the statement for n = x (where x is any
number) without assuming any knowledges of other cases.

2. Having proven that when n = x, P (n) is true; we assume that P (n) is true for all n ≥ x. (the
inductive step) (this is just the case, which works through magic, don’t look to deep into it.)

6.5.1 The Third Theorem

Theorem 6.5.1. Prove that for any integer n ≥ 1, the sum of the first n natural numbers is S(n) =
n(n+ 1)

2

Proof. We will start by looking at the basic step, where we will take n = 1.

S(1) = 1

=
1(1 + 1)

2
= 1

We will now complete the inductive step.

(a) We can assume that S(n) of the first n natural numbers is n(n+ 1)

2

(b) We need to prove that the statement is true also for the first n+1 natural numbers, this means:

compiled at
2024-05-07 17:24:43+01:00

25 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 6. METHODS OF PROOF

S(n+ 1) =
(n+ 1)(n+ 2)

2

Which leaves us with the following assumption:

S(n) = 1 + 2 + . . .+ n =
n(n+ 1)

2

Now we can derive the following:

S(n+ 1) = 1 + 2 + . . .+ n+ (n+ 1)

= S(n) + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1)

2
+

2(n+ 1)

2

=
(n+ 1)(n+ 2)

2

Therefore, assuming that the formula is true for n, we have proved the formula is true for n+1. �

6.6 Disproving a Universally Quantified Statement
As we saw in the previous lecture, a universally quantified statement is one which applies “for all” or
“for some”.

To disprove
∀x ∈ D P (x)

we have to find one x ∈ D that makes P (x) false. This value of x is called the ‘counterexample’.

For example, the statement:
∀n ∈ N(2n + 1 is prime)

is false because, where n = 3, 23 + 1 = 9 which is not prime.

compiled at
2024-05-07 17:24:43+01:00

26 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 7. GRAPHS: AN INTRODUCTION

Page 7

Lecture - Graphs: An Introduction
� 2024-03-12 � 1700 � Janka

7.1 History of Graphs
Euler introduced the concept of graph theory in 1736 when he abstracted the Bridges of Königs-
berg problem into a series of vertices and edges. Graphs were further developed with the Travelling
Salesman Problem whereby adding weighting values to an edge allows the most efficient route to be
calculated.

Graphs can be a useful tool in solving a number of different mathematical problems, including those
which are abstractions of a real world thing - for example the cities in which the travelling salesman
needs to travel through in their problem. There are four main applications of graph theory today:

Existence Problems are problems in which we want to prove the existence (or lack thereof) of
something. For example the Königsberg bridge problem.

Optimisatoin Problems are problems in which we are looking to find the best (most efficient)
solution (this can either be a maximisation or minimisation). For example - the Travelling
Salesman Problem.

Construction Problems are problems in which we are trying to prove if a solution exists and if it
does - how it can be constructed. For example - finding a walk in the Köingsberg bridge problem

Enumeration Problems are problems in which we are looking for how many objects have a given
property. For example - how many optimal routes can be found in the Travelling Salesman
Problem.

7.2 Basic Terminology

A graph, G is a pair (V,E) of sets:

V is a non-empty set of vertices (nodes)

E is a set of edges. Each element of E is a set of two distinct elements of V

u v
e

Figure 7.1: Example Graph

If e ∈ E, then e = {u, v}, u and v are different elements
of V called the end vertices of e (where e joins vertices
u and v).

The notation for v and u changes too; we can use uv instead of e = {u, v} for the edge e, meaning uv
and vu are the same edge. The vertices u and v are said to be incident with the edge uv or that they
are adjacent because they are the end vertices of an edge.

compiled at
2024-05-07 17:24:43+01:00

27 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 7. GRAPHS: AN INTRODUCTION

We are only considering Finite Graphs in this module. These are graphs in which all their elements
are defined and are capped in a certain place.

v1 v2

v3 v4

v5

v6

Figure 7.2: Finite Graph

V = {v1, v2, v3, v4, v5, v6}
E = {{v1, v2}, {v2, v4}, {v1, v3}, {v3, v4}, {v3, v5}, {v4, v5}}

or E = {v1v2, v2v4, v1v3, v3v4, v3v5, v4v5}

Note that although the diagrams of the graph can look nice, and help us to visualise them - they are
not actually important for most of our problems.

7.2.1 Multigraph

A multigraph / pseudograph is like a graph, however it may contain loops and/or multiple edges. In
this module, there is not a formal definition of one and we won’t study them too much.

v1

v2

v3

v4

Figure 7.3: Graph with multiple edges

v1

v2 v3

Figure 7.4: Graph with loops

7.2.2 Degree of a Vertex

The number of edges incident with a vertex, v, is called the degree of v and is denoted by deg v. A
vertex of degree 0 is said to be isolated.

v1

v2 v3 v4

v5 v6

v7

Figure 7.5: Degree of Vertex example graph

degV1 = 2, degV6 = 2,

degV7 = 1, degV5 = 0,

degV1 = 3, degV2 = 5,

degV3 = 5

Note that V5 is an isolated vertex in the above example.

7.2.3 Degree Sequence

When d1, d2, …, dn are the degrees of the vertices of a graph (or multigraph), G, ordered so that
d1 ≤ d2 ≤ · · · dn Then (d1, d2, . . . , dn) is called the degree sequence of G.

compiled at
2024-05-07 17:24:43+01:00

28 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 7. GRAPHS: AN INTRODUCTION

v1 v2

v3 v4

v5

v6

Figure 7.6: Example Graph For Degree Sequence

The degree sequence: (0, 2, 2, 2, 3, 3)

7.3 Euler Theorem

Euler’s Theorem (or Handshaking Lemma) states that: In any graph G = (V,E), the sum of all the
vertex-degrees is equal to twice the number of edges,∑

v∈V
deg v = 2|E|

This is a great revelation, however it lead to two more revelations:

1. In any graph, the sum of all the vertex-degrees is an even number

2. In any graph, the number of vertices of odd degree is even

7.4 Special Types of Graphs
We will now see that there are special types of graphs that have their own names.

7.4.1 Complete Graphs

For any positive integer n, the complete graph on n vertices, denoted Kn, is that graph with n vertices
every two of which are adjacent.

v1

Figure 7.7: K1

v1 v2

Figure 7.8: K2

v1 v2

v5

Figure 7.9: K3

v1 v2

v3v4

Figure 7.10: K4

The complete graph on n has n(n− 1)

2
edges because Eulers theorem.

7.4.2 Bipartite Graphs

A bipartite graph is one whose vertices can be partitioned into disjoint sets V1 and V2 in such a way
that every edge joins in a vertex in V1 and a vertex in V2 (no edges within V1 nor within V2).

v1 v2

v3 v4 v5 v6

Figure 7.11: Incomplete bipartite graph

v1 v2

v3 v4 v5 v6

Figure 7.12: Complete bipartite graph
A complete bipartite graph is a bipartite graph in which every vertex in V1 is joined to every vertex
in V2.

compiled at
2024-05-07 17:24:43+01:00

29 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 7. GRAPHS: AN INTRODUCTION

7.5 Subgraphs
A graph H is a subgraph of G if and only if the vertex and edge set of H are respectively subsets of
the vertex and edge set of G.

v1 v5 v3

v4

v2

Figure 7.13: G

v1v5v3

v4

v2

Figure 7.14: H1

v1 v5 v3

v4

v2

Figure 7.15: H2

7.6 Isomorphic Graphs
Two graphs, G and H are said to be isomorphic if H can be obtained from G by re-labelling the
vertices.

v1 v2

v3v4

Figure 7.16: G

u1 u2

u3 u4

Figure 7.17: H

In the above example, v1 maps to u1, v2 to u2 and so on. What this means is that if the u labelling
was to be replaced with the v labelling - the same graph would be obtained.

G is isomorphic to H is there is a bijective function f : V (G) → V (H) such that

• if u and v are adjacent in G then f(u) and f(v) are adjacent in H

• if u and v are not adjacent in G then f(u) and f(v) are not adjacent in H.

It is difficult to prove that two graphs are isomorphic, as we have to try all the bijections between
vertex sets and check them. It can be shown, that if G and H are isomorphic graphs then G and H:

• have the same number of vertices

• have the same number of edges

• have the same degree sequence

• either both are connected or both are not connected (to be covered next week)

So it can be easier to show that graphs are not isomorphic, which is shown by proving that one of the
properties above is broken.

compiled at
2024-05-07 17:24:43+01:00

30 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 8. WALKS, TRAILS, PATHS

Page 8

Lecture - Walks, Trails, Paths
� 2024-03-19 � 1700 � Janka

8.1 Walks

A walk in a multigraph is an alternating sequence of vertices and edges (beginning and ending with
a vertex), where each edge is incident with the vertex immediately preceding and following it. The
length of a walk is the number of edges in it.

Many real problems, when translated to graph theory - enquire about the possibility of walking through
a graph. Most of the definitions and results about walks are valid for graphs and multigraphs, even if
we don’t always specific this.

a

d

b

f

e

c

g

1

2

5

6

3
7

9

4, 8

Figure 8.1: Example of a Walk

A walk of length 9: d - da - a - ab - b -
be - e - ed - d - db - b - bc - c - ce - e - ed - d - df

Alternatively represented as:
(d, a, b, e, d, b, c, e, d, f)

A walk is closed if the first vertex is the same as the last, for example the walk (d, a, b, e, d, b, c, e,
d), and is otherwise said to be an open walk.

compiled at
2024-05-07 17:24:43+01:00

31 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 8. WALKS, TRAILS, PATHS

8.1.1 Trails and Paths

A trail is a walk in which all edges are distinct. A path is a walk in which all vertices are distinct.

a

d

b

f

e

c

g

1

2

3

5

4

Figure 8.2: Example of a Trail

A trail (d, a, b, e, d, f) of length 5.

Not all the vertices of a trail are necessarily
different.

a

d

b

f

e

c

g

1

2

3

4

5

Figure 8.3: Example of a Path

A path of length 5: (d, a, b, e, f, g).

All the vertices and edges of a path are differ-
ent.

8.1.2 Circuits and Cycles

A closed walk in which all edges are different is called a circuit (this is a closed trail). A closed walk
in which all vertices (except are the first and the last vertex) are different is called a cycle (this is a
closed path).

a

d

b

f

h

c

e

g

i

Figure 8.4: Examples of Circuits and Cycles

A circuit of length 6: (d, a, b, c, h, b, d)

A cycle of length 4: (f, e, i, g, f)

8.2 Connected Graphs
A graph, G is connected if there is a path in G between any pair of vertices; if this condition is not
true then the graph is disconnected.

compiled at
2024-05-07 17:24:43+01:00

32 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 8. WALKS, TRAILS, PATHS

Figure 8.5: Connected Graph Figure 8.6: Disconnected Graph

8.2.1 Bridges

An edge in a connected graph is a bridge if deleting it would create a disconnected graph.

Figure 8.7: Example of a Bridge Figure 8.8: Disconnected Graph

Figure 8.9: Example of a Bridge Figure 8.10: Disconnected Graph

8.3 Königsberg Bridge Problem & Eulerian Graphs

a

c d

b

e

Figure 8.11: Königsberg bridges represented as a
graph

Königsberg Bridge Problem: Is it possible
to start on one of the land masses, walk over
each of the seven bridges exactly once, and
return to the starting point (without getting
wet!)?

A graph is Eulerian if and only if it has a circuit that contains every edge - expressed a different way
this is a closed walk using each edge exactly once (called an Eulerian circuit).

a

c d

b

e

Figure 8.12: Königsberg bridges represented as a
graph, showing circuit

Eulerian circuit: (a, c, b, d, a, e, b, a)

8.3.1 Eulerian Graphs

Not all graphs are Eulerian graphs, in fact there are many which are not.

We can characterise Eulerian graphs as graphs which can be drawn without removing the pen from
the paper, and without covering any edges twice. This means that for each vertex there is one edge
“in” and one edge “out” which means that the degree of each vertex must be even. This is a necessary
and sufficient condition.

compiled at
2024-05-07 17:24:43+01:00

33 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 8. WALKS, TRAILS, PATHS

From the above information, we can deduce the theorem: A multigraph is Eulerian if and only if it is
connected and every vertex has an even degree.

Applying the Theorem to our Königsberg bridge problem, we see that: the graph has vertices of odd
degree ⇒ the graph is not Eulerian ⇒ a closed walk containing each edge exactly once does not exist.
Therefore Euler has to destroy one bridge! (or just accept that the problem isn’t solvable...)

8.3.2 Construction of Eulerian Circuit

We have a necessary and sufficient condition for a graph being Eulerian. To find an Eulerian circuit
within Eulerian graphs, there exists an efficient algorithm. This algorithm is called Fleury’s Algorithm.

8.3.3 Fleury’s Algorithm

We start with an Eulerian Graph on the input

1. Choose any vertex to start

2. From that vertex, choose an edge to traverse. Choose a bridge only if there is no alternative.

3. After traversing that edge, erase it (and vertices of degree 0), coming to the next vertex.

4. Repeat steps 2 - 3 until all edges have been traversed, and you should be back at the starting
Vertex.

8.3.4 Semi-Eulerian Graphs

A connected graph with exactly two vertices of odd degree (called semi-Eulerian) contains an open
(Eulerian trail) which includes every edge. This works because when we add an edge connecting the
vertices of odd degree, we get a graph with all vertices of even degree. Therefore the graph is Eluerian,
and therefore must contain an Eluerian circuit.

To find an Eluerian trail:

• Start at one of the odd degree vertices

• Construct an Eluerian circuit (and use the new edge at the end)

• The last vertex must be the second odd degree vertex

• You now have an open trail which includes every edge

8.4 Travelling Salesman Problem & Hamiltonian Graphs
A graph is Hamiltonian if and only if it has a cycle that contains every vertex - a closed path using
each vertex exactly once (this is called a Hamiltonian cycle). For example:

d

b c

e

f

Figure 8.13: Hamiltonian cycle

Hamiltonian cycle: (d, e, f, c, b, d)

compiled at
2024-05-07 17:24:43+01:00

34 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 8. WALKS, TRAILS, PATHS

Note that the definition might look similar to Eulerian graphs, however the results are very different.

There is no “if and only if” sufficient and necessary condition which can be used to categorise a
Hamiltonian Graph.

8.4.1 Construction of a Hamiltonian Graph

There are known algorithms for finding a Hamiltonian cycle however none at present are known that
would guarantee to find it in a reasonable amount of time. The known algorithms use an exhaustive
search of all possibilities, requiring exponential or factorial time in the worst case.

8.5 Adjacency Matrix
So far, we have explored graphs using pictorial representations of them - this is all well and good when
we are looking at them in notes, however when we are trying to get a computer to understand them,
we have to store the graph in a slightly different format. There are several possibilities of how the
information about a graph can be coded when working in a program, for example using sets, or more
commonly the adjacency matrix.

We can take the formal definition of the adjacency matrix to be: Let G be a graph with n vertices
labelled v1, v2, …, vn. The adjacency matrix of G is the n × n matrix A = (aij) whose(i, j) entry is
aij , where for each i and j with 1 ≤ i, j,≤ n, define:

aij

{
1 if vivj is an edge
0 if vivj is not an edge

8.5.1 Example Adjacency Matrix

Shown below is an example graph, G, the corresponding adjacencies represented in a table and the
corresponding adjacency matrix, A.

v4

v1 v2

v3

v5 v6

Figure 8.14: G

v1 v2 v3 v4 v5 v6

v1 0 1 0 1 1 1

v2 1 0 1 0 1 1

v3 0 1 0 1 0 0

v4 1 0 1 0 0 0

v5 1 1 0 0 0 1

v6 1 1 0 0 1 0

Table 8.1: Table of adjacencies

compiled at
2024-05-07 17:24:43+01:00

35 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 8. WALKS, TRAILS, PATHS

A =

0 1 0 1 1 1

1 0 1 0 1 1

0 1 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 1

1 1 0 0 1 0

8.5.2 Properties of an Adjacency Matrix

• The diagonal entries of A are always 0; that is aii = 0 for i = 1, . . . , n.

• The adjacency matrix is symmetric, that is aij = aji for all i, j.

• deg vi is the number of 1’s in row i; this is also the number of 1’s in column i (row i and column
i are the same).

• If we square the matrix A, we get A2 and some interesting properties:

– The (i, i) entry of A2 is the degree of vi
– The (i, j) entry of A2 is the number of different walks of length 2 from vi to vj .
– In general, for any k ≥ 1, the (i, j) entry of Ak is the number of walks of length k from vi

to vj .
– In general, for any k ≥ 1, the (i, j) entry of Ak is the number of walks of length k from vi

to vj .

8.6 Matrix Multiplication: a recap

NB: This was originally taught in M30943 (Architectures & Operating Systems, Maths Component)
at level 4.

If we take two matricies:

A =

1, 7
2, 4

 and B =

3, 3
5, 2

We can find the matrix C = A×B.

However first, we will assign each element of the matrix an identifier and see how the rows of A are
multiplied by the columns of B to produce C:a1,1, a1,2

a2,1, a2,2

×

b1,1, b1,2
b2,1, b2,2

 =

(a1,1 × b1,1 + a1,2 × b2,1), (a1,1 × b1,2 + a1,2 × b2,2)

(a2,1 × b1,1 + a2,2 × b2,1), (a1,2 × b2,1 + a2,2 × b2,2)

Now we can substitute the references in for their values into the equations:1, 7

2, 4

×

3, 3
5, 2

 =

(1× 3 + 7× 5), (1× 3 + 7× 2)

(2× 4 + 3× 5), (2× 3 + 4× 2)

Now we can, finally, substitute the actual values into C:

compiled at
2024-05-07 17:24:43+01:00

36 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 8. WALKS, TRAILS, PATHS

1, 7
2, 4

×

3, 3
5, 2

 =

38, 17
26, 14

compiled at
2024-05-07 17:24:43+01:00

37 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 9. TREES

Page 9

Lecture - Trees
� 2024-04-16 � 17:00 � Janka

9.1 Trees: A Gentle Introduction
The word “tree” has many different uses in the English Language. We will not be exploring Christmas
trees, outdoor trees or file trees in this module - rather we will be exploring the mathematical sub-class
of graphs called a “tree”. In maths, a “tree” is a connected graph that contains no cycles.

B

A

E F

G H C

I D S

Figure 9.1: G, a tree

Alternatively, we can consider the following
mathematical definition of a tree: G is a tree.
G is connected and acyclic (without cycles).
Between any two vertices of G there is pre-
cisely one path

As we can see above, trees have a simple structure. However, to enumerate all (non-isomorphic) trees
with n vertices is very difficult unless n is small. An example of this can be seen below.

Figure 9.2: Tree Figure 9.3: Tree Figure 9.4: Tree Figure 9.5: Tree Figure 9.6: Tree

The above trees all are n ≤ 4

9.1.1 Basic Properties of Trees

A tree with more than one vertex must contain a vertex of degree 1 - this is considered to be a leaf
(or terminal vertex). This is because if we take a vertex at random, v1, we can then search outward
along a path from v1 looking for a vertex of degree 1; finding this vertex would indicate the end of the
path and therefore indicate we have a tree. Should this vertex not be found - we would find a circuit
(proving this is not a tree).

compiled at
2024-05-07 17:24:43+01:00

38 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 9. TREES

9.2 Is It A Tree?
To work out if a graph contains a tree, we can use the following theorem: A connected graph with n
vertices is a tree if and only if it has n− 1 edges.

Within this theorem - we are most concerned with the conditional propositional (“if and only if ”) as
this is the deciding factor as to if the graph contains a tree or not.

9.2.1 Example

If we take a connected graph’s degree sequence as:

(1, 1, 2, 2, 2)

Is it a tree?

The solution to this starts with identifying the number of vertices and the number of edges. The
number of edges can be calculated from the sum of the degree sequence, divided by two. Therefore
we know that this graph has 4 edges. The number of vertices is the number of entries in the degree
sequence, therefore we know that this graph has 5 vertices. As the number of edges is 1 less than the
number of vertices, the condition n− 1 is true and therefore we have a tree!

9.3 Spanning Trees
A Spanning Tree of a connected graph, G, is a subgraph that is a tree and that includes every vertex
of G. Spanning Trees are considered to be different if they make use of different edges on the graph.

B F

EDC

A

Figure 9.7: Original Graph

B F

EDC

A

Figure 9.8: Spanning Tree 1

B F

EDC

A

Figure 9.9: Spanning Tree 2

Spanning Trees can be used in a variety of cases, one of these is in a problem of a cash-strapped
Council attempting to repave some pavements...

a

d

b

f

e

c

g

1

1

1

1

11
1

1

1
1 1

1

Figure 9.10: Untouched Pavement Layout

Problem: The Council plans to pave certain
roads in a way such that anyone can get be-
tween any two towns on pavement. What
roads should be paved so as to minimise the
total length of pavement required? (Note
that, at this stage, all pavements have length
1.)

compiled at
2024-05-07 17:24:43+01:00

39 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 9. TREES

a

d

b

f

e

c

g

1

1

1

1

11
1

1

1
1 1

1

Figure 9.11: First Attempt at paving

In this first attempt, we pave all roads. This
means that the Council would need to pay
for 11 roads to be paved.

However this is not the ideal solution - we can
use the idea of a Spanning Tree to improve
this solution and therefore reduce the number
of roads which need paving.

a

d

b

f

e

c

g

1

1

1

1

11
1

1

1
1 1

1

Figure 9.12: An optimum paved solution

This is now an optimum solution. We have
removed all edges from the Tree other than
those which are required to satisfy the prop-
erty that there is one path between any two
given nodes.

9.3.1 Finding a Spanning Tree

It is relatively easy to find a spanning tree in a connected graph, G. If G, with n vertices, has n− 1
edges - it is already a spanning tree; or if G has no cycles then it is already a tree, so G itself is a
spanning tree for G. For trees where it’s spanning tree has not already presented itself to us - we work
through the edges in the graph, deleting them until the spanning tree property is achieved. This can
be seen below.

B F

EDC

A

Figure 9.13: Original Graph

B F

EDC

A

Figure 9.14: Removed AD

B F

EDC

A

Figure 9.15: Removed BE

compiled at
2024-05-07 17:24:43+01:00

40 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 9. TREES

B F

EDC

A

Figure 9.16: Removed CF

B F

EDC

A

Figure 9.17: Removed AB

B F

EDC

A

Figure 9.18: Removed BC

9.3.2 Using a Depth First Search To Find Spanning Trees

Rather than testing to see if each edge is in a cycle, and removing it if it is, to find spanning trees - it
is possible to use a Depth First Search based algorithm. Depth First Searches are also useful in other
Graph Applications, for example to test whether a graph is connected and to produce a spanning tree
in the connected case. The method is based on exploring the vertices.

A Depth First Search to find a spanning tree works by:

1. Start at any vertex (label it)

2. Choose any adjacent unlabelled vertex to it (label it, and move to it).

3. Repeat step 2 until there is no unlabelled adjacent vertex to it

4. Find the last labelled vertex with an unlabelled adjacent vertex (backtrack to this) then go to
step 2

5. Algorithm complete when you get back to the first labelled vertex

The algorithm for finding a Spanning Tree using DFS is shown below. The input is a connected graph
G with vertices ordered (v1, v2, …, vn) and the output is a spanning tree T = (V ′, E′).

V ′ = {v1}, E′ = ∅, w = v1
while (true)

while (∃wv ∈ W such that T and wv don't create a cycle in T)
choose the vertex with min k, vk, that when added to T
doesn't create a cycle in T
E′ = E′ ∪ {wvk}, V ′ = V ′ ∪ {vk}, w = vk

end while
if w = v1

return T
w = parent of w in T //backtrack

end while

9.4 Minimum Spanning Trees
It’s all well and good fining a tree when all the edge ‘weights’ are equal to 1 - this works for some graphs.
However, when we consider a properly weighted graph with it’s edges having different weightings, we
need to look for a slightly different tree type. A minimum spanning tree of a weighted graph is a
spanning tree of least weight (that is, a spanning tree for which the sum of the least weights of all its
edges is least among all spanning trees). In some good news, there’s a few algorithms which can be
used to find the minimum spanning tree…

compiled at
2024-05-07 17:24:43+01:00

41 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 9. TREES

9.4.1 Kruskal’s Algorithm

Kruskal’s algorithm works by starting with a weighted graph then adding edges in order from lowest
weight to highest weight, as long as they don’t create a circuit. The steps are shown below:

1. Start with the last edge

2. Add the next edge with the least weight, as long as this won’t create a circuit

3. Repeat step 2

4. Stop when you have n− 1 edges (where n is the number of vertices)

Kruskal’s algorithm is a greedy algorithm, this means it makes decisions without any regard for con-
sequences which this decision might have in the future, however the current decisions are appearing
to be good.

The full process of this is displayed below.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

7
8 9

11

Figure 9.19: Initial Graph

This is the graph which we need to find the
spanning tree of.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

7
8 9

11

Figure 9.20: Kruskal’s step 1

To start, we analyse what weights we have on
the edges. The lowest weight is 5 and the high-
est is 11. We therefore pick one of the edges
with weight 5 and mark that as part of our
Minimum Spanning Tree.

compiled at
2024-05-07 17:24:43+01:00

42 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 9. TREES

a

d

b

f

e

c

g

5

7

9

8

7
5

6

7
8 9

11

Figure 9.21: Kruskal’s step 2

Next, we repeat the same process again. As
there is still one edge with weight 5, we anal-
yse that one; and as when connecting it to the
Minimum Spanning Tree, we don’t get a cir-
cuit - we can add it to the Minimum Spanning
Tree.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

7
8 9

11

Figure 9.22: Kruskal’s step 3

We’ve now exhausted all edges with weight 5,
so we look for the next weight up. In this case
it’s 6. We check for circuits then add to the
Minimum Spanning Tree.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

7
8 9

11

Figure 9.23: Kruskal’s step 4

We’ve now exhausted all edges with weight 6,
so we look for the next weight up. In this
case it’s 7. As there are a few options for
which edge we could pick, we choose one at
random. We check for circuits then add to
the Minimum Spanning Tree.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

7
8 9

11

Figure 9.24: Kruskal’s step 5

As there are still edges with weight 7 which
we are yet to examine and add, we do so. We
check for circuits then add to the Minimum
Spanning Tree.

compiled at
2024-05-07 17:24:43+01:00

43 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 9. TREES

a

d

b

f

e

c

g

5

7

9

8

7
5

6

7
8 9

11

Figure 9.25: Kruskal’s step 6

We now find ourselves in the most compli-
cated step, typical for the last step! We
know that we need to add 1 more edge to the
Minimum Spanning Tree to make the n − 1
criteria come true.

We cannot add the be edge, as this would
result in a circuit being formed, so we look
to the next logical option. However, we can-
not add either the bc or ef edges as either of
these would also cause a circuit to be formed.
Therefore, we are forced to go for the edge eg,
as this is the lowest weighted edge which we
can add without forming a circuit.

9.4.2 Prim’s Algorithm

Prim’s Algorithm works by starting with any random vertex, then adding all the adjacent edges to
that to a list of possible edges. From these possible edges, an edge is selected where it doesn’t already
connect to another visited vertex and that has the least weighting value, and this is added to the
Minimum Spanning Tree. This process is then repeated, with edges of the new vertex added to the
possible list and the edge with the lowest weighting (that doesn’t cause a circuit when added) is
added to the Minimum Spanning Tree. The algorithm stops when either there are n vertices in the
Minimum Spanning Tree or when there are n−1 edges in the Minimum Spanning Tree. The stages of
the algorithm are outlined below, with the edges added to the Minimum Spanning Tree in grey and
the potential edges in blue.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

15
8 9

11

Figure 9.26: Initial Graph

This is the graph which we need to find the
spanning tree of.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

15
8 9

11

Figure 9.27: Prim’s step 1

We choose node b to start with. From this,
we mark all it’s adjacent edges as potential to
add.

compiled at
2024-05-07 17:24:43+01:00

44 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 9. TREES

a

d

b

f

e

c

g

5

7

9

8

7
5

6

15
8 9

11

Figure 9.28: Prim’s step 2

Now we have our potential vertices, we can
choose one. After looking at the options, we
see that there are two which are possibilities
(ab and be) which both have weights of 7. As
neither would cause a circuit to be created,
we choose one at random. In this case, we’ve
chosen ab.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

15
8 9

11

Figure 9.29: Prim’s step 3

We now have a new vertex available to use.
From this, we can add all it’s adjacent nodes
which are not part of the Minimum Spanning
Tree to the list of potentials.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

15
8 9

11

Figure 9.30: Prim’s step 4

We now take a look at the options for edges
to add to the Minimum Spanning Tree and
see that the edge with the lowest value is our
new one, ad. As from adding this to the Min-
imum Spanning Tree, we don’t get a circuit -
we can progress with adding ad to our Mini-
mum Spanning Tree.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

15
8 9

11

Figure 9.31: Prim’s step 5

As vertex d is now in our Minimum Spanning
Tree, we can add all it’s adjacent edges to our
potential list. We can also remove db as it
is no longer a viable option for adding to the
Minimum Spanning Tree as it would cause a
circuit.

compiled at
2024-05-07 17:24:43+01:00

45 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 9. TREES

a

d

b

f

e

c

g

5

7

9

8

7
5

6

15
8 9

11

Figure 9.32: Prim’s step 6

We now look at the options for what edge to
add to the Minimum Spanning Tree. The next
lowest edge value is df , at a weight of 6. As
this doesn’t create a circuit - we can add it to
the Minimum Spanning Tree.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

15
8 9

11

Figure 9.33: Prim’s step 7

We can now add edges adjacent to f to the
potential list.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

15
8 9

11

Figure 9.34: Prim’s step 8

We now look again at options for what edges
we can add to the Minimum Spanning Tree.
The option with the lowest weight is be, and if
adding it, it wouldn’t create a circuit. There-
fore we add it.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

15
8 9

11

Figure 9.35: Prim’s step 9

As we have added a new node to our Minimum
Spanning Tree, we can add it’s adjacent edges
to the potential list. We also need to remove
a number of edges from the potential list as
these are no longer viable solutions, as they
would cause circuits to be created.

compiled at
2024-05-07 17:24:43+01:00

46 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 9. TREES

a

d

b

f

e

c

g

5

7

9

8

7
5

6

15
8 9

11

Figure 9.36: Prim’s step 10

We can now repeat the step of looking for the
edge with the least weighting and then check-
ing to see if by adding that we would intro-
duce a circuit or not. The edge ec has weight
5 which is the lowest of the potential list, and
by adding it we would not be introducing a
circuit.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

15
8 9

11

Figure 9.37: Prim’s step 11

As we have now added c to the Minimum
Spanning Tree, we can review the potential
list and remove invalid options, such as bc.
There are no new edges to add to the poten-
tial list as they all have existed from other
vertices.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

15
8 9

11

Figure 9.38: Prim’s step 12

We can now look for the edge in the poten-
tial list with the lowest weight. This is eg.
We then check to see if by adding it to the
Minimum Spanning Tree, a circuit would be
created and as the answer is no, we can add
it to the Minimum Spanning Tree.

a

d

b

f

e

c

g

5

7

9

8

7
5

6

15
8 9

11

Figure 9.39: Prim’s step 13

The final stage for Prim’s algorithm is to
remove any edges from the potential list.

Prim’s Algorithm has produced a Minimum
Spanning Tree with length 39.

compiled at
2024-05-07 17:24:43+01:00

47 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 9. TREES

9.5 Rooted Tree Terminology
A tree is rooted if it comes with a specified vertex, called the root. Each vertex in a tree has zero
or more children - the vertices “below” it in the tree. A vertex that has a child is called the child’s
parent vertex. If two vertices have the same parent, they are called siblings.

B

A

E F

G H C

I D S

Figure 9.40: Example of a Rooted Tree

B is the root node
A is a child of B
E and F are siblings
D is the parent of C

compiled at
2024-05-07 17:24:43+01:00

48 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 10. NETWORK MODELS AND DIGRAPHS

Page 10

Lecture - Network Models and
Digraphs
� 2024-04-23 � 17:00 � Janka

10.1 Directed Graphs
Another use of graphs, which we are yet to explore, is how they can be used to model real life situa-
tions. In situations where edges are representing roads or pipes then they need to be associated with
directions / weights, from this we get a directed graph (a digraph).

A Digraph is a pair (V,E) of sets, V is a nonempty set of vertices, E is a set of ordered pairs of distinct
elements of V , called arcs (edges).

A digraph can be pictured like a graph, with the orientation of an arc indicated by an arrow. A
digraph is just a graph in which each edge has an orientation or direction assigned to it.

u v

w

Figure 10.1: Example of a Digraph

V = {u, v, w}
E = {vu, vw, uw}
Note that for vu, the direction is from v to u,
therefore uv and vu are different.

10.1.1 Some Properties

Similar to graphs, digraphs do not contain multiple arcs / loops.

Each vertex of a digraph has:

indegree which is the number of arcs directed into that vertex; and

outdegree which is the number of arcs directed out of that vertex

u v

w z

Figure 10.2: Example of a Digraph

vertex u has indegree 1 and outdegree 1,
vertex v has indegree 1 and outdegree 2,
vertex w has indegree 2 and outdegree 0,
vertex z has indegree 0 and outdegree 1

Similar, formal, definitions exist for digraphs as do that for walks, paths, etc. However it is necessary
to follow the direction of the arcs.

compiled at
2024-05-07 17:24:43+01:00

49 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 10. NETWORK MODELS AND DIGRAPHS

10.1.2 Adjacency Matrix

The adjacency matrix A of G with vertices v1, v2, …, vn is defined by setting aij = 1 if there is an arc
from vi to vj (and set to 0 otherwise). A is generally not symmetric.

u v

w z

Figure 10.3: A digraph, G

A =

0 0 0 0

1 0 0 0

1 1 0 0

0 0 1 0

A2 =

0 0 0 0

0 0 0 0

1 0 0 0

1 1 0 0

Most assertions made about the adjacency matrix for graphs apply with appropriate changes for
digraphs as well. Within an adjacency matrix, the outdegree of the vertex v1 is the number of 1’s in
the row i; the indegree of the vertex vi is the number of 1’s in the column i. The (i, j) entry of Ak is
the number of different walks of length k from vi to vj respecting the orientation of arcs, where k ≥ 1.

10.2 Network Models
Directed graphs can be useful for modelling network problems such as a transportation network; a
pipeline network; or a computer network. In each case, the problem is generally to find the maximum
flow. Maximising the flow in a network is a problem that belongs to both graph theory and operations
research.

If we take an example in which the arcs of a digraph (a network) can represent an oil pipeline network
and show the direction the oil can flow.

S

A

B

C

D

T

11

10

12

4

2

8

11

14

Figure 10.4: Example of a Digraph

Oil is unloaded at the dock, S, (the source)
and pumped through the network to the re-
finery, T , (the sink).

The weight on the arcs shows the capacities of the pipelines. Our goal is to pump as much oil as
possible from S to T . To formalise such a concept, we use the term a flow.

10.2.1 A Flow

A flow in a network is a description of the amount of commodity that can flow along the network (in
a unit of time). No pipe must receive more than it can cope with (therefore ‘flow ≤ capacity’ for each
arc); and no commodity must be lost along the way (‘flow in = flow out’ for all vertices except S and T).

A flow assigns to each arc e which is a non-negative number, f(e), subject to the previous two
constraints. Note the notation is of the form flow, capacity assigned to each arc. This can be seen in
the following example:

compiled at
2024-05-07 17:24:43+01:00

50 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 10. NETWORK MODELS AND DIGRAPHS

S

A

B

C

D

T

0, 11

2, 10

0, 12

2, 4

0, 2

0, 8

0, 11

2, 14

Figure 10.5: Example of a Flow

We camp pump 2 units from S to T through
A and D and 0 through the other arcs. the

potential edges in blue. a 7 5 8 b 9 This assignment has the properties:

• Each arc “flow (e) ≤capacity (e)”

• For each vertex A,B,C,D “the flow into each one is equal to the flow out of it”

Therefore this is a flow!

The value of a flow is the sum of all flow for all outgoing arcs form the source S. In our above example,
this would be 2 + 0 = 2.

The value of the flow must be the same as the sum of flows for all incoming arcs to T . So, the value
of this flow is 2.

10.2.2 Formalisation

10.2.2.1 Formal Definition of a Network

Let G = (V,E) be a directed weighted graph with the following properties:

• a vertex S (source) has no incoming arcs - and is the start of the flow

• a vertex T (sink) has no outgoing arcs - and is the end of the flow

The non-negative weight on each arc is the capacity of the edge, e, denoted by c(e), and c(e) ≥ 0,
which is the maximum amount of some commodity which can flow through it in a unit of time (for
example, litres of oil, kW of electricity, etc).

10.2.2.2 Formal Definition of a Flow

A flow is a mapping that assigns to each edge, e, a number, denoted by f(e), which satisfies two
conditions:

• Feasibility Condition where 0 ≤ f(e) ≤ c(e) for each edge e ∈ E, in words - the flow along each
arc must be less than or equal to the capacity of that arc.

• Conservation of flow where for each internal vertex u (not source or sink), the sum o flows along
the arcs into u is equal to the sum of the flows along the arcs out of u.∑

v∈V
f(uv) =

∑
v∈V

f(vu) for all u ∈ V − {S, T}

compiled at
2024-05-07 17:24:43+01:00

51 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 10. NETWORK MODELS AND DIGRAPHS

10.2.2.3 Formal Definition of the Value of a Flow

The value of a flow:
∑
v∈V

f(Sv) (which is the sum of S-outgoing arcs).

By the flow conservation law, none of the flow is lost at any vertex. This means, the value of the flow
is also equal to the sum of flows of all arcs going into T :∑

v∈V
f(vT) =

∑
v∈V

f(Sv)

Which is equal to the sum of T-incoming arcs and the sum of S-outgoing arcs.

A maximum flow is a flow of maximum value.

10.2.3 Construction of Flows

The simple way of finding a maximum flow is to locate a path, P , from S to T (which follows the
direction specified by the arrows on arcs) and define a flow by setting:

f(e) =

{
1, if e ∈ P

0, if e /∈ P

S

A

B

C

D

T

0, 11

1, 10

1, 12

0, 4

0, 2

0, 8

1, 11

0, 14

Figure 10.6: Flow Construction example pt. 1

This digraph shows the flow SACT , which has
a value of 1.

The next stage is to increment the arcs flow rate on the path until you reach the maximum capacity
of the smallest arc on that path.

S

A

B

C

D

T

0, 11

10, 10

10, 12

0, 4

0, 2

0, 8

10, 11

0, 14

Figure 10.7: Flow Construction example pt. 2

The path SACT has a saturated arc SA,
this is a flow (10), equal to its capacity (10).
A flow along the patch SACT cannot be
improved.

The value of the flow is 10.

We now look for another path from S to T with an unsaturated edge.

compiled at
2024-05-07 17:24:43+01:00

52 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 10. NETWORK MODELS AND DIGRAPHS

S

A

B

C

D

T

2, 11

10, 10

10, 12

0, 4

2, 2

0, 8

10, 11

2, 14

Figure 10.8: Flow Construction example pt. 3

The path SBDT has a saturated arc BD
(where the flow along the path can’t be
improved)

The value of the flow is 12.

We now look for another unsaturated edge which we can form into a path from S to T .

S

A

B

C

D

T

3, 11

10, 10

10, 12

0, 4

2, 2

1, 8

11, 11

2, 14

Figure 10.9: Flow Construction example pt. 4

The path SBCT has a saturated arc, CT .

The value of the flow is 13.

10.2.4 Improving the Flow

However, as we could expect - we’re not done yet! There are still further improvements to be made
to our flow.

If we consider a path, P , from S to T in the underlying undirected graph (eg P = (S,B,C,A,D, T)).
Then:

• an edge, e, is a forward arc (with respect to the path P) if the orientation of e follows the
direction of p, eg SB or AD,

• otherwise (if arcs are directed against the direction of the path P), e is a backwards arc, eg CA.

We will now also consider a path from S to T (in an underlying undirected graph) with the properties:

• All forward arcs on the path are unsaturated

• All backwards arcs on the paths are carrying a non-zero flow

S

A

B

C

D

T

3 + 4, 11

10, 10

10− 4, 12

0 + 4, 4

2, 2

1 + 4, 8

11, 11

2 + 4, 14

Figure 10.10: Increasing Flow

Using the grey path the flow can be increased
by 4.

compiled at
2024-05-07 17:24:43+01:00

53 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 10. NETWORK MODELS AND DIGRAPHS

Note that no feasibility condition has been broken in the process. The conservation condition (where
before “flow out = flow in” for all internal vertices) is now:

• For vertices B and D: “flow out + 4 = flow in + 4”

• For vertex C: “flow out = flow in + 4 - 4”

• For vertex A: “flow out + 4 - 4 = flow in”

Here we can see that changing the flow by 4 (+4 for forward arcs, -4 for backward arcs) along the
“path” (S,B,C,A,D, T) increases the flow by 4.

We now need to look at why the value 4 is so special. For forward arcs, if we calculate e using
c(e)− f(e):

• SB : 11− 3 = 8

• BC : 8− 1 = 7

• AD : 4− 0 = 4

• DT : 14− 2 = 12

And for backwards arcs, we take e as f(e) therefore:

• CA : 10

To calculate the value of improvement which can be made on a path, we first have to calculate the
values as we did above, then find the minimum resulting value (in our case, that’s 4). We then add
4 to our forward arcs, and minus 4 from our backwards arcs on this new path. From this we get the
new arc values which we can substitute in on our digraph.

S

A

B

C

D

T

7, 11

10, 10

6, 12

4, 4

2, 2

5, 8

11, 11

6, 14

Figure 10.11: Increased Flow

By checking all the possibilities, we can see
that there are no further possibilities for
improvement. This means tha maximum flow
has now been achieved.

The value of the flow is 17.

10.2.5 Formal Definitions for Flow Improvement

Let P be a path from S to T in an underlying undirected graph to a network G satisfying the following
conditions:

• for each forward arc e in P : f(e) < c(e),

• for each backward arc e in P : 0 < f(e)

Such a path is called a flow-augmenting path; and if on{f(e)|e is a backward arc in P}e exists in the
network - a flow can still be improved.

The outline of the algorithm for finding the maximum flow is shown below:

1. Start with a flow (e.g. a flow with 0 for each edge)

compiled at
2024-05-07 17:24:43+01:00

54 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 10. NETWORK MODELS AND DIGRAPHS

2. Search for a flow-augmenting path P . If no such path exists, stop - the flow is maximum

3. Increase the flow through the path by ∆, where ∆ is the minimum over the values
{f(e)|e is a backward arc in P} and {c(e)−f(e)|e is a forward arc in P}. Change the flow along
the arcs in P to be:

• for each forward arc e in P : f(e) := f(e) + ∆

• for each backward arc e in P : f(e) := f(e)−∆

Go back to step 2.

An exhaustive search of all paths from S to T can be used for finding a flow-augmenting path P . When
there exists more than one flow-augmenting path, the order in which we use them is not important.
There is double check, whether our value is correct, using the following theorem:
Theorem: In a directed graph, the value of a maximum flow is equal to the value of a minimum cut.

10.2.6 (S, T)-cut

An (S, T)-cut is a partition {S, T } of V such that S ∈ S and T ∈ T . This can be seen below:

S

A

B

C

D

T

7, 11

10, 10

6, 12

4, 4

2, 2

5, 8

11, 11

6, 14

Figure 10.12: Example Directed Graph

S = {S,A,B}, T = {C,D, T}
or
S = {S,A}, T = {C,D, T,B}
or
S = {S}, T = {C,D, T,B,A}

The capacity of an (S, T)-cut, {S, T }, is the sum of capacities of all arcs from S to T .

A minimum (S, T)-cut is an (S, T)-cut of the smallest possible capacity.

For example, if we take the above Digraph and the following (S, T)-cut:

S = {S}
T = {A,B,C,D, T}

Then we can calculate the capacity of the (S, T)-cut as:

cap(S, T) =

= c(SA) + c(SB)

= 10 + 11

= 21

We can use the property of a (S, T)-cut and max-flow to verify that we have found the maximum
possible flow for a digraph - in that the value of a maximum flow is equal to the value of a minimum
(S, T)-cut.

compiled at
2024-05-07 17:24:43+01:00

55 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 11. CONNECTIVITY AND CUTS

Page 11

Lecture - Connectivity and Cuts
� 2024-04-30 � 1700 � Janka

In Graph Theory, properties of graphs are intensively studied, These properties will be covered in this
lecture:

• edge-connectivity;

• vertex-connectivity

11.1 Edge-Connectivity

The edge-connectivity, λ(G) of a connected graph, G, is the smallest number of edges whose removal
may disconnect G. This can be seen with a graph below:

Figure 11.1: Connected Graph

If we remove any edge, the graph is still con-
nected. However, there exists two edges such
that if we remove them, the graph becomes
disconnected. Therefore λ(G) = 2.

As we have seen above, this means that we can take G to have an edge-connectivity λ(G) if:

• there exists λ(G) edges such that their removal disconnects G

• removal of any λ(G)− 1 edges does not disconnect G.

11.1.1 Edge-Cuts

The edge cut of a graph is a set of edges whose removal renders the graph disconnected. Two examples
of this can be seen below, with the edges to remove in grey.

Figure 11.2: 6 edges, displayed Figure 11.3: 6 edges, removed

compiled at
2024-05-07 17:24:43+01:00

56 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 11. CONNECTIVITY AND CUTS

Figure 11.4: 4 edges, displayed Figure 11.5: 4 edges, removed
The edge-connectivity of a graph is the size of the smallest edge cut of G. A graph, G, is k-edge con-
nected when λ(G) ≥ k. This means it remains connected whenever fewer than k edges are removed.

For example, a 2-edge-connected or 3-edge-connected graph would have an edge-connectivity (λ(G))
of 3, therefore:

λ(G) ≥ k for k = 1, 2, 3

11.2 Vertex Connectivity

The vertex-connectivity, κ(G), of a connected graph, G, is the smallest number of vertices whose
removal may disconnect G. Note that when a vertex is removed from a graph, the edges incident to
it are also removed. This can be seen in an example below

Figure 11.6: Example Graph Figure 11.7: TL & BR vertices
removed

Figure 11.8: Incident edges re-
moved

After removing any one vertex, the graph is still connected; however there exists two vertices such
that removing both of them means the graph becomes disconnected. Therefore κ(G) = 2.

A vertex cut of a connected graph, G, is a set of vertices whose removal renders G disconnected. The
vertex-connectivity, κ(G) is the size of the smallest vertex cut.

In complete graphs, the vertex-connectivity definition breaks down because G cannot be disconnected
by removing vertices. The vertex connectivity of a complete graph, Kn, is n− 1.

A graph, G, is said to be k-vertex connected (or k-connected) if the graph remains connected when
you delete fewer than k vertices from the graph.

11.3 Upper Bounds for Connectives

To get the upper bounds on λ(G) and κ(G) we can use the following theorem: For any connected
graph G = (V,E):

κ(G) ≤ λ(G) ≤ δ(G) ≤ 2|E|
|V |

δ(G) is the smallest vertex-degree in G.

Note that 2|E|
|V | is the average of the vertex-degrees; therefore the sum of the vertex-degrees is 2|V |.

compiled at
2024-05-07 17:24:43+01:00

57 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 11. CONNECTIVITY AND CUTS

11.4 Optimal Connectivity
A graph, G, where:

κ(G) = λ(G) = δ(G) =
2|E|
|V |

is a graph which has the maximum vertex-connectivity and the maximum edge-connectivity possible
for any graph with |V | vertices and |E| edges. A graph with these conditions is said to have optimal
connectivity.

All graphs which have optimal connectivity are regular graphs where every vertex has the same degree,
however not every graph has optimal connectivity.

compiled at
2024-05-07 17:24:43+01:00

58 of 88 Thomas Boxall

Part II

Functional Programming

59

M21274 (DMAFP) PAGE 12. INTRODUCTION TO FUNCTIONAL PROGRAMMING

Page 12

Lecture - Introduction to Functional
Programming
� 2024-01-22 � 1200 � Matthew

12.1 Introduction
Functional Programming is a different programming paradigm. There are all sorts of different ways
we can classify a programming language, paradigm being one of them. More details on this in another
module.

12.1.1 Imperative vs Functional Programming

Before we go too deep into Functional Programming, we will first look at the structure of Imperative
Programming.

Imperative Programming is a paradigm where the execution of the program consists of executions of
statements, which each impact the program’s state. Side Effects can be caused by the statements;
these are things that the program does where it cannot guarantee the outcome - for example get the
current temperature, ask the user to enter a number or getting the system time.

Pure Functional Programming does not have a state, does not have statements and does not have
side effects. However - side effects are a “necessary evil” so they get brought back in isolated from the
main program. Once side effects are introduced, our functional programming becomes impure.

12.2 Functional Programming
In Functional Programming, there are three key terms - expression, evaluation and value. An expres-
sion is some text which has a value, for example 2 * 3 + 1; a value is the thing which the expression
has, for example 7; and evaluation is the process used to obtain a value from an expression.

We will start our FunProg journey looking at Mathematical Functions, which we can think of as a
box which maps argument values to a result value. A Haskell program is mainly made up of Function
definitions, for example

square :: Int -> Int
square n = n * n

The first line above starts with the function name, then lists the parameters (a single Int), then
finally the result type. The second line is the actual function, starting with the name, then the names
assigned to the parameters, then the value which gets returned. The double colon (::) is read as ‘is
type of’.

compiled at
2024-05-07 17:24:43+01:00

60 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 12. INTRODUCTION TO FUNCTIONAL PROGRAMMING

12.3 Data Types: A Brief Introduction
Haskell includes a number of basic data types which we can make use of.

12.3.1 Boolean

The Bool data type has the values True and False. As well as having the boolean operators && (and);
|| (or); and not (not). These can be seen implemented in the following function which implements
the exclusive or operator (which gives True when exactly one of its arguments is True):

exOr :: Bool -> Bool -> Bool
exOr x y = (x || y) && not (x && y)

12.3.2 Int & Float

Haskell includes a number of different numerical data types - we’ll start of using the Int and Float
types. Int is a fixed-space integer data type; and Float is a floating point data type. Operators for
these data types include:

• arithmetic operators: +, - and *

• The Float data type includes floating point division /

• The Int has integer division and remainder functions div and mod

• relation operators: ==, /= (not equals), <, >, <= and >=

The operators use the standard precedence rules (as experienced in other languages).

12.4 Conditional Expressions
Haskell includes a conditional expression which takes the form:

if condition then m else n

where condition is a boolean expression and m & n are expressions of the same type Where condition
is true - the expression evaluates to m; and where condition is false - the expression evaluates to n.

In the next lecture, we’ll see an alternative to conditional expressions.

compiled at
2024-05-07 17:24:43+01:00

61 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 13. INTRODUCTION TO FUNCTIONAL PROGRAMMING II

Page 13

Lecture - Introduction To Functional
Programming II
� 2024-01-29 � 1200 � Matthew

13.1 Evaluation and Calculation
In a similar way to that of tracing an imperative program to understand the effect of executing their
statements on the program state; we can evaluate expressions of a functional program step-by-step to
understand the operation of it. This is also known as calculation.

The process of calculation will be explained with the example function:

twiceSum x y = 2 * (x + y)

which we can evaluate using the example inputs 4 and (2 + 6). The complete calculation of the
expression is as follows:

twiceSum 4 (2 + 6)
 2 * (4 + (2 + 6)) def of twiceSum
 2 * (4 + 8) arithmetic
 2 * 12 arithmetic
 24 arithmetic

13.2 Guards
Guards are Boolean expressions used in function definitions to give alternative results dependent on
the parameter values. The following function gives the largest of the two Int values:

maxVal :: Int -> Int -> Int
maxVal x y
| x >= y = x
| otherwise = y

We saw the if ... then ... else ... construct last week, which could be used in place of guards.
However guards are the preferential thing to use where there are more than one case - as they allow
for this easier. Shown below is a function, maxThree, which returns the largest of three Int values
passed in:

maxThree :: Int -> Int -> Int -> Int
maxThree x y z
| x >= y && x >= z = x
| y >= z = y
| otherwise = z

compiled at
2024-05-07 17:24:43+01:00

62 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 13. INTRODUCTION TO FUNCTIONAL PROGRAMMING II

Calculations involving guards are represented slightly differently, note the ?? denoting when the func-
tion is inside the guard. Shown below is the calculation of maxThree:

maxThree 3 2 5
?? 3 >= 2 && 3 >= 5 first guard
?? True && 3 >= 5 def of >=
?? True && False def of >=
?? False def of &&
?? 2 >= 5 second guard
?? False def of >=
?? otherwise third guard
?? True def of otherwise
 5

13.3 Local Definitions
Single line definitions in Haskell can be slightly unwieldy to read, write and understand. For this
reason - we may want to breakdown the definition’s expression to make it easier to read. For example
the function:

distance :: Float -> Float -> Float -> Float -> Float
distance x1 y1 x2 y2 = sqrt ((x1-x2)^2 + (y1-y2)^2)

can be broken down to the following:

distance x1 y1 x2 y2 = sqrt (dxSq + dySq)
where

dxSq = (x1 - x2) ^ 2
dySq = (y1 - y2) ^ 2

From the above example, we see that the main expression uses the local definitions and the local
definitions use the function’s parameters. The local definitions can only be used within the functions
that they are defined within; they are “hidden” from the rest of the program. The local definitions
can appear in any order within the where.

compiled at
2024-05-07 17:24:43+01:00

63 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 14. PATTERN MATCHING & RECURSION

Page 14

Lecture - Pattern Matching &
Recursion
� 2024-02-12 � 1200 � Matthew

14.1 Modules

As with Python and other popular programming languages, Haskell supports modules (libraries)
which provide pre-written and tested code to do certain things. As with other languages, when using
a module in Haskell - we have to import it with the import command. The first line below shows
importing the entire module and the second line shows importing only two functions:

import Data.Char
import Data.Char (toUpper, toLower)

Haskell’s standard library which is auto-imported into every other module & the interpreter is called
the standard prelude.

14.2 Functions & Operators

Haskell includes both functions and operators. Functions (sqrt, mod, etc) are used in prefix notation
(i.e. mod n 2). Operators (+, -, **, etc) are used in infix notation (i.e. 1 + x); apart from the unary
minus operator which is a prefix operator.

It is possible to use any binary (two-argument) function as an operator by surrounding it with back-
quotes (`). For example n `mod` 2 is equivalent to mod n 2. Similarly, we can use an operator as a
function by encasing the operator in parentheses (()). For example (+) 1 x is equivalent to 1 + x.

14.3 Pattern Matching
So far, we have seen two ways of defining functions:

• using single equations

• using guards

We will now add a third function definition mechanism to our options: pattern matching.

Pattern matching consists of a sequence of equations; each pattern (on the left hand side) is associated
with a different result (on the right hand side). An example of this is seen below, defining the not
function which is included in the Prelude.

not :: Bool -> Bool
not True = False
not False = True

compiled at
2024-05-07 17:24:43+01:00

64 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 14. PATTERN MATCHING & RECURSION

It is also possible to use a wildcard to simplify pattern matching. This can be seen below where the
Boolean or operator is redefined.

(||) :: Bool -> Bool -> Bool
False || False = False
_ || _ = True

Alternatively, we can also use named parameters which can take a value from the pattern and use it
in the output. An example of this is shown below

(||) :: Bool -> Bool -> Bool
True || _ = True
False || p = p

14.4 Recursion
As with other programming languages, Haskell supports recursion. A recursive definition is one that
is defined in terms of itself.

Recursion is a critical component in Haskell as pure functional programming does not support loops as
these are imperative constructs (as they operate on a program’s state). We shall recuse lots especially
when using lists.

14.4.1 Recursive Definition of Factorial

To illustrate recursion in Haskell, we will examine an example of the Factorial function. fact(n) is
the product of the integer n and all the integers below it n− 1, n− 2, …. For example:

fact(3) = 3× 2× 1 = 6

Note that the factorial of a number n > 0 can be defined in terms of the factorial of n−1, for example

fact(4) = 4× fact(3)

This leads us to the following recursive function definition

fact :: Int -> Int
fact n

| n > 0 = n * fact (n - 1)
| n == 0 = 1
| otherwise = error "undefined for negative ints"

14.4.2 Primitive vs General Recursion

Primitive recursion is recursion where

• the base case considers the parameter value 0

• the recursive case considers how to get from value n− 1 to n

General Recursion is a recursive function where there is not a precise halting case, but there is a
halting condition. For example, in the divide function below - the halting case is where n < m - not
when either of them are at exact values.

divide :: Int -> Int
divide n m

| n < m = 0
| otherwise = 1 + divide (n - m) m

compiled at
2024-05-07 17:24:43+01:00

65 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 15. TUPLES, STRINGS & LISTS

Page 15

Lecture - Tuples, Strings & Lists
� 2024-02-12 � 12:00 � Matthew

15.1 Characters & Strings

Haskell comes with both the String and Char types. In Haskell, a single quote (') is used to denote
characters and double quotes (") for strings. For example:

ghci> :type 'a'
'a' :: Char

ghci> :type "Sam"
"Sam" :: String

The Char module defines some useful functions on characters. Such as converting to uppercase or
checking if a provided character is a digit.

ghci> import Data.Char

ghci> toUpper 'a'
'A'

ghci> isDigit 'a'
False

15.2 Tuples
As seen in other languages, we can combine multiple pieces of data into one data type. For example,
we may want to combine a name (represented as a string) and a mark (represented as an integer)
for example ("Dave", 74) which would have the tuple type (String, Int). This example can be
furthered to a small program which takes two Tuples representing a student and outputs the name of
the student with the higher mark:

betterStu :: (String, Int) -> (String, Int) -> String
betterStu (s1, m1) (s2, m2)

| m1 >= m2 = s1
| otherwise = s2

We can define a type synonym which can be used in the place of the raw definition of the tuple. For
example, if we define the type synonym on the first line below, we can then re-define betterStu to
use that.

type StudentMark = (String, Int)
betterStu :: StudentMark -> StudentMark -> String

compiled at
2024-05-07 17:24:43+01:00

66 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 15. TUPLES, STRINGS & LISTS

betterStu (s1, m1) (s2, m2)
| m1 >= m2 = s1
| otherwise = s2

Tuples can also be used to enable a function to return more than one value.

15.3 Lists
Lists are the main data structure in Haskell. They are used to store any number of data values of
the same type. For example the first list below is a list of integers and the second example is a list of
strings.

[12, 64, -92, 85, 12]
["This", "is", "a", "list"]

The type of a list (l) is denoted by [l]. For example:

ghci> :type [True, False, False]
[True, False, False] :: [Bool]

The empty list ([]) is an element of any list type.

15.3.1 Strings as a List of Chars

Strings in Haskell are simply lists of characters, therefore the type String is declared as:

type String = [Char]

This means that the two expressions below are the same

['h', 'e', 'l', 'l', 'o']
"hello"

This also means that the operations that we will cover later in this lecture (for example concatenation
of lists) therefore also apply to strings.

15.3.2 Lists from Ranges

It is possible to use the operator .. to generate lists. For example:

[3 .. 9] = [3, 4, 5, 6, 7, 8, 9]
[3.1 .. 9] = [3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9.1]
['a' .. 'z'] = "abcdefghijklmnopqrstuvwxyz"

We can also add an argument to give steps different from 1 as seen below:

[3, 5 .. 15] = [3, 5, 7, 9, 11, 13, 15]
[0, 0.1 .. 0.5] = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

15.3.3 List Comprehension

We can use list comprehension to build one list from another list. For example, if we define:

aList = [1, 2, 3, 4, 5]

THen the list comprehension shown on the first line below will have the value on the second line below:

[2*i | i <- aList]

[2, 4, 6, 8, 10]

compiled at
2024-05-07 17:24:43+01:00

67 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 15. TUPLES, STRINGS & LISTS

We read this as “take all 2*i where i comes from aList”. The <- symbol represents the set member
symbol (∈) from Maths.

List comprehension is extremely powerful as can be seen in the following example:

bList = [2, 3, 6, 9, 4, 7]

ghci> [mod i 2 == 0 | i <- bList]
[True, False, True, False, True, False]

We can take this another step further where we can add a test at the end of the generator. The
following example has given all the values that are less than 5 from cList

cList = [2, 3, 6, 9, 4, 8]

ghci> [i * 2 | i <- cList, i < 5]
[4, 6, 8]

We can use list comprehension and a pattern on the left hand side of the <- as seen below:

addPairs :: [(Int, Int)] -> [Int]
addPairs pairList = [i + j | (i, j) <- pairList]

ghci> addPairs [(1, 2), (4, 8), (6, 3)]
[3, 12, 9]

15.4 Polymorphic Functions
The Prelude comes with a number of functions built in, we will now examine some of these. While
doing so, we will examine polymorphism.

If we consider the length function, which gives the number of elements in a list (returning an Int),
which works for any type of lists. For this reason, we may think of it to have the following types:

length :: [String] -> Int
length :: [Bool] -> Int

However! The actual type of length is given as:

length :: [a] -> Int

Here, we are using a type variable which stands for an arbitrary type. By convention a, b, c, … are
used as type variables.

The expressions [a] -> Int is known as the most general type for length

15.4.1 List Functions

We can define polymorphic functions, by not giving a type declaration. Haskell will try and infer the
mst general type by looking at the structure of the function.

15.4.1.1 Adding Elements To Front Of List

For lists in Haskell, one of the most used operations is :. This adds an element to the front of the list
and is of type a -> [a] -> [a]. For example:

ghci> 3:[5, 7, 2]
[3, 5, 7, 2]

compiled at
2024-05-07 17:24:43+01:00

68 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 15. TUPLES, STRINGS & LISTS

15.4.1.2 List Concatenation

The ++ operator can be used to join two lists together:

ghci> "hello" ++ "world"
"helloworld"

15.4.1.3 Return Element From Specific Position

The !! operator returns an element at a given position. For example:

ghci> ["fish", "ham", "cheese", "spam"] !! 2
"cheese"

Note that eventhough indexing a list like this is common in other languages, we will not tend to use
this operator that often.

15.4.1.4 Checking If List Is Empty

The null function tests whether a list is empty. For example:

ghci> null [1, 2]
False

compiled at
2024-05-07 17:24:43+01:00

69 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 16. LIST PATTERNS AND RECURSION

Page 16

Lecture - List Patterns and Recursion
� 2024-02-19 � 1200 � Matthew

16.1 Patterns, a Recap
Many of the functions we have been using so far have been defined using patterns. These can include
literal values, variables, and wildcards. All of these can be seen below in the redefinition of or from
lecture 3.

or :: Bool -> Bool -> Bool
or True _ = True
or False a = a

Patterns can also include Tuples. For example the fst and snd functions from the Prelude:

fst (x,_) = x
snd (_,y) = y

Note that these projection functions are polymorphic - they work for tuples of data of any kind.

16.2 Lists and List Patterns
As we saw in the last lecture, the : operator will append whatever precedes it to the list which succeeds
it. For example:

ghci> 4:[7,3]
[4,7,3]

This means that every lit can be built from [] and :, which are constructors for lists.

Note that the : operator is right-associative meaning that it works from right to left adding the
right-most to the second right-most, and so on. For example:

ghci> 1:2:[]
[1,2]

We can use these constructors in patterns. Where we use : in list patterns when we want to deal
with the first element and the rest of the list separately. For example, the following example (from
the Prelude) returns the first element of a list:

head :: [a] -> a
head (x:xs) = x

Note that the naming convention x:xs is standard; where we say “x, exes”.

It is also possible to use wildcard matching:

head :: [a] -> a
head (x:_) = x

compiled at
2024-05-07 17:24:43+01:00

70 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 16. LIST PATTERNS AND RECURSION

16.3 Recursion over Lists
As we already know from recursion in the previous weeks, we require a base case and a recursive case.
When recursing over lists - the base case considers the empty list [] and the recursive case gives the
result for any non-empty list (one matched by x:xs) from the result of the tail of the list xs.

If we take the example of the implementation of a Prelude defined function sum.

sum :: [Int] -> Int

The function is defined to return a sum of a list of integers.

The base case of our function will be when the list is empty, as the sum of [] is obviously 0. The
recursive case will be where xs is greater than 0. Therefore, we can define the function as

sum [] = 0
sum (x:xs) = x + sum xs

16.3.1 General Recursion over Lists

The above recursive function we have explored is of the type ‘primitive recursion’. It is also possible
to use general recursion over lists.

For example, we take the Prelude function zip which has the following definition:

zip :: [a] -> [b] -> [(a,b)]

This function joins two lists into a single list of tuples:

ghci> zip ['r', 'h', 'a'] [4, 7, 2]
[('r',4),('h',7),('a',2)]
ghci> zip [5, 7, 1, 5] ['a', 'b']
[(5,'a'),(7,'b')]

Note that the lists don’t have to be of the same length, and that if the lists are different lengths then
the last few elements of the longer elements are dropped.

The easiest way to define zip is by beginning with the recursive case of two non-empty lists x:xs and
y:ys. In this case we can place x and y into tuple, and zip up the tails xs and ys which give us:

zip (x:xs) (y:ys) = (x.y) : zip xs ys

Now we have one part of the program left - handling when one argument is []. There are three
possibilities for this:

• y is empty

• x is empty

• x and y are empty

These can all be written together with a wildcard:

zip _ _ = []

which gives us the entire function:

zip :: [x] -> [y] -> [(x,y)]
zip (x:xs) (y:ys) = (x.y) : zip xs ys
zip _ _ = []

compiled at
2024-05-07 17:24:43+01:00

71 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 17. FUNCTIONS AS VALUES

Page 17

Lecture - Functions as Values
� 2024-02-26 � 12:00 � Matthew

17.1 Functions as Arguments
In Functional Programming, functions can be treated as data. This means that they can be passed
as arguments to other functions; and that they can be returned as results from functions. A function
that either takes another function as an argument; or returns a function is known as a Higher-Order
Function. Higher-Order programming can be very expressive.

The following function definition applies a function to a value and then applies the same function
again to the result.

twice :: (Int -> Int) -> Int -> Int
twice f x = f (f x)

We would also need to define a function to be used in the above function:

succ :: Int -> Int
succ n = n + 1

Now that we have two functions, we can look at an example calculation:

twice succ 5
 succ (succ 5) def of twice
 succ (5 + 1) def of succ
 (succ 6) arithmetic
 (6 + 1) def of succ
 7 arithmetic

17.1.1 Function Composition

Haskell includes a function composition operator “.”. For two functions, f and g, the expression

(f . g) x

means apply g to x then apply f to the result. Note that this is the same as the mathematical
operation f ◦ g. The below code snippet shows the order in which the operator works:

(f . g) x = f (g x)

The output type of the first function must be of the same type as the input type of the second function.

compiled at
2024-05-07 17:24:43+01:00

72 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 17. FUNCTIONS AS VALUES

17.1.2 Function-Level Definitions

The composition operator, ., allows us to easily define functions in terms of other functions. For
example, we can replace the definition:

twice f x = f (f x)

with:

twice f = f . f

A function defined just in terms of other functions (without reference to other arguments) is known
as a function-level definition. This notation can also be known as “point-free style”

17.2 Partial Application
A powerful feature shared by many functional languages is that functions can be partially applied. If
we consider the following simple function definition which multiplies two numbers together:

multiply :: Int -> Int -> Int
multiply x y = x * y

We would typically consider the only thing that this function does is to multiply two parameters
together and return the result. However - it would be more correct to consider that we can apply the
function to one argument and are left with a function of one argument.

Returning to our example, we may use it as follows:

double = multiply 2

which would then mean that:

ghci> double 5
10

As we can see - double is taking a single argument which is being passed to multiply along with it’s
defined argument. This allows us to understand more about how Haskell works, in that every function
in Haskell takes exactly one argument. This means that multiply, with two input parameters, is
actually taking a single parameter (Int) then returning another function, Int -> Int which is used
to produce the final result.

We can see that:

multiply :: Int -> Int -> Int

is shorthand for:

multiply :: Int -> (Int -> Int)

17.2.1 Operator Sections

It is not only the functions which can be partially applied - it is also possible to partially apply an
operator. The following are examples of operator sections:

• (2*) - a function that multiplies its arguments by 2

• (/2) - a function that divides its argument by 2

• (2/) - a function which gives 2 divided by its argument

• (>3) - a function which tests if its argument is greater than 3

compiled at
2024-05-07 17:24:43+01:00

73 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 17. FUNCTIONS AS VALUES

17.3 Patterns of Computation
When designing algorithms, there are a number of things that we often want to do to a list:

• transform every element of a list in some way

• remove those elements of a list that don’t possess a given property

• combine all the elements with a particular operation

Haskell includes a number of higher-order functions that implement each of these patterns.

17.3.1 Mapping

If we take the example function, doubleAll which doubles every element in the list. A recursive
example of this is below:

doubleAll :: [Int] -> [Int]
doubleAll [] = []
doubleAll (x:xs) = 2*x : doubleAll xs

This function has a pattern in it, where an operator (could also be a function) is applied to every
element of the list.

The Prelude defines a function map which takes the operation to be applied as a parameter. Using
map, the definition of the function doubleAllbecome (note the use of an operator section):

doubleAll xs = map (2*) xs

However, we can make this simpler. We do not need to specify xs because that is added complexity.
The simplest form of this function can be seen below:

doubleAll = map (2*)

17.3.2 Filtering

Filtering doesn’t change any of the elements of the list - rather it checks if the elements pass the test
and keeps them if so. For example:

keepPositive [] = []
keepPositive (x:xs)

| x > 0 = x : keepPositive xs
| otherwise = keepPositive xs

Using the filter function, we are able to condense this down to the following:

keepPositive = filter (>0)

Note here that we have used the simplest form of the function as we do not need to specify the list
we want to filter in the function definition.

17.3.3 Folding

The Prelude contains the function foldr which apples the function specified on the provided list. It
is used to combine the elements of the list in some way. For example, the following function which
adds every element in the list:

addUp :: [Int] -> [Int]
addUp [] = 0
addUp (x:xs) = x + addUp xs

compiled at
2024-05-07 17:24:43+01:00

74 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 17. FUNCTIONS AS VALUES

can be rewritten using foldr as follows

addUp = foldr (+) 0

Note that you still have to specify the type for the function when using foldr, for example for addUp
this would be:

addUp :: [Int] -> Int

compiled at
2024-05-07 17:24:43+01:00

75 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 18. ALGEBRAIC TYPES

Page 18

Lecture - Algebraic Types
� 2024-03-11 � 12:00 � Matthew

“There’s nothing in the blob, it’s a blob”

18.1 Types in Haskell: A Recap
As we have already seen, there are a number of built-in types in Haskell:

• Int, Float, Bool and Char (the basic types)

• (Int, Int, Char) (tuple types)

• [Int] or [(Int, Char)] (the list type)

It is also possible to give convenient names to types using synonyms, for example:

• type HouseNumber = Int

• type StreetName = String

• type Address = (HouseName, StreetName)

These types are only so well and good, as they do not provide a convenient way to model more
complex structures (such as Binary Trees). Within Haskell, we are able to use Algebraic Types to
define arbitrarily complex types.

18.2 Algebraic Types
We declare the algebraic type using the keyword data, followed by:

• the name of the type being defined

• a list of constructors

Note that both have to begin with a capital letter. For example:

data Day = Mon | Tue | Wed | Thur | Fri | Sat | Sun

As we can see above, the simplest algebraic types are those where the constructors don’t take any
arguments. Here, the constructors are the data values (or members of the type). We call a type which
has been defined in this way an enumerated type.

compiled at
2024-05-07 17:24:43+01:00

76 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 18. ALGEBRAIC TYPES

18.2.1 Enumerated Type

Another example of an enumerated type is Haskell’s Boolean type:

data Bool = False | True

The simplest way to define a function on an Enumerated Type is by pattern matching. Using the Day
data type an example is:

isWeekend :: Day -> Bool
isWeekend Sat = True
isWeekend Sun = True
isWeekend _ = False

This might look rather obtuse, and that would be a correct observation. This is because our data
type (Day) doesn’t include any operators such as ==. It is possible to define == ourselves, however this
would be tedious.

18.2.2 Algebraic Types & Type Classes

We can get Haskell to provide a == operator by declaring that we want our type (Day) to be a member
of the Eq type class. (Note that Eq includes all types that include == and /=). To do this, we would
need to define Day as follows:

data Day = Mon | Tue | Wed | Thur | Fri | Sat | Sun
deriving (Eq)

Now that we have the == operator implemented for Day, we can redefine isWeekend as:

isWeekend :: Day -> Bool
isWeekend day = day == Sat || day == Sun

However, Eq only includes Equality operators - what happens if we want to compare two values and
see if one is greater than the other.

Fortunately, Haskell includes more type classes which can provide us with the functionality that we
require for this:

• Ord provides us with <, <=, > and >=

• Show to provide a function

show :: Day -> String

which converts Day values into strings

• Read which provides a function

read :: String -> Day

which converts strings (for example “Mon”) into Day values.

When using all these additional type classes, we may end up with the following definition of Day:

data Day = Mon | Tue | Wed | Thur | Fri | Sat | Sun
deriving (Eq,Ord,Show,Read)

This therefore means we can redefine isWeekend as follows:

isWeekend :: Day -> Bool
isWeekend day = day >= Sat

compiled at
2024-05-07 17:24:43+01:00

77 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 18. ALGEBRAIC TYPES

18.2.3 Product Types

As we saw in an earlier lecture, we can define student records (their name and a mark) as a type
synonym giving a name to a tuple:

type StudentMark = (String, Int)

However, it is also possible for us to use an algebraic type with a constructor that has two arguments
- one for the name and one for the mark:

data StudentMark = Student String int

Here, the constructor Student is followed by it’s argument types. For example:
Student "Sam" 44
Student "Jill" 64

As could be expected, it is also possible to define functions which use the product data types:
betterStu :: StudentMark -> StudentMark -> String
betterStu (Student s1 m1) (Student s2 m2)

| m1 >= m2 = s1
| otherwise = s2

Which would be executed with:
ghci> betterStu (Student "Sam" 44) (Student "Jo" 73)
"Jo"

The main advantage of using an algebraic type is that every data value has an explicit label of its
purpose (for example, Student)

18.2.4 Sum Types

It is possible for us to combine the ideas of enumerated types and product types, this gives us types
whose elements can be built in different ways. For example, a shape might be specified by it’s radius
or a rectangle specified by its height and width. It is possible to represent this using a sum type:

data Shape = Circle Float |
Rectangle Float Float

Which would be declared as:
Circle 9.0
Rectangle 4.5 6.0

This is a bit like an Abstract Class, where the parent class has no types of it’s own and that the child
classes are Concrete classes. Shape would be the parent, abstract class, and Circle & Rectangle
would be the child, concrete classes.
As expected, it is possible to write a single function for a sum type (i.e Shape) which runs different
code depending on the type of Shape used. This is done through Pattern Matching:

area :: Shape -> Float
area (Circle r) = pi * r * r
area (Rectangle h w) = h * w

This can be extremely useful, for example in the problem of representing addresses. Some buildings
have numbers, and some buildings have names. We can define a data type for representing the first
line of an address as:

data Address = Address Building String
data Buildings = Number Int | Name String

Which we can use as:
Address (Number 42) "High Street"
Address (Name "Seaview") "Uplands Road"

compiled at
2024-05-07 17:24:43+01:00

78 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 18. ALGEBRAIC TYPES

18.2.5 Recursive Types

5

1

• •

8

7

• •

•

Figure 18.1: Binary Tree Example

Types can be described in terms of themselves. If we take the example of a binary tree, which we
know is defined recursively as:

• a null node; or

• a node with a value, left sub-tree and a right-sub-tree

We can define a data type directly from this definition:

data Tree = Null |
Node Int Tree Tree

Which we can see in-use below (note that the final value is represented by the diagram on the previous
page):

Null
Node 7 Null Null
Node 5 (Node 1 Null Null)

(Node 8 (Node 7 Null Null) Null)

It is possible to define functions which interact with recursive types. Generally, functions on trees will
mirror the recursive structure of the type (meaning they use Null as the base case & Node for the
recursion). For example, the following function returns the height of a binary tree:

height :: Tree -> Int
height Null = 0
height (Node _ st1 st2) = 1 + max (height st1) (height st2)

compiled at
2024-05-07 17:24:43+01:00

79 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 19. INPUT / OUTPUT

Page 19

Lecture - Input / Output
� 2024-03-18 � 12:00 � Matthew

So far, our Haskell programs have been self-contained (meaning they have had no interaction with the
user). This lecture will introduce the concept of handling input and output in a Haskell program.

19.1 Input & Output - Breaking Referential Transparency
As we have seen for many lectures leading to this point, the fundamental building block of functional
programming is the function definitions. The most important property of a function, is that it will
always give the same result when given the same arguments. If we take the following example:

square :: Int -> Int
square n = n * n

then if x = y then square x = square y. This property is known as referential transparency.

Referential Transparency allows us to mre easily reason about program code, both formally and
informally. For example, if we take the following expression

e - e

then for any number, e, the expression will always evaluate to 0. It is easy to prove a functional
program as being correct, when compared to a imperative language using a loop.

This approach to I/O taken by some functional languages is to provide “functions” to read values from
the keyboard and return the read value. For example the generic, non Haskell, function below:

inputInt :: Int

This approach breaks referential transparency, as we now do not know what the user has entered. The
fact that inputInt will now return different values every time the program is run is due to the side
effects of reading a new value from the keyboard.

19.2 Haskell’s Approach to I/O
Since any function in a functional program might include an inputInt, the whole program becomes
difficult to understand. For this reason - Haskell provides a different approach to input / output.
Haskell’s approach is known as the monadic approach since it is based on the mathematical concept
of a monad. Input & Output is viewed as a sequence of actions (or programs) that happens in the
specified sequence. Haskell provides the types

IO a

of I/O actions of type a.

A value of type IO a is an action which when executed:

compiled at
2024-05-07 17:24:43+01:00

80 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 19. INPUT / OUTPUT

• performs an input or output operation and then

• returns a value of type a

Haskell also provides a mechanism for sequencing actions, meaning actions can be sequenced to run
one after the other. This can be seen to behave in a way similar to that of a simple imperative
language. This means that typically programs in Haskell therefore comprise of some:

• function definitions (without any I/O)

• I/O programs

These imperative I/O programs are really an illusion, rather they are actually “syntactic sugar” for
purely functional expressions.

19.2.1 Reading Input

The Prelude contains two functions for reading input, one for getting a string and one for getting a
character.

getLine :: IO String
getChar :: IO Char

The first line above gets a string from the standard input and the second line above reads a single
character form the standard input.

19.2.2 Writing Output

Unsurprisingly, performing output is different to retrieving input - as we do not expect output actions
to return results. Despite this fact, Haskell I/O programs have to be of type IO a for some a. Haskell
provides a one-element type called (), which contains the single value () - this is used to denote that
a Haskell I/O program returns nothing of interest.

Haskell includes the function to print strings:

putStr :: String -> IO ()

Haskell also includes the function which appends a newline after the outputted string:

putStrLn :: String -> IO ()

For example - the Haskell “Hello, World!” program is:

main :: IO ()
main = purStrLn "Hello, World!"

This also illustrates the concept of a ‘starting point’ of a complete Haskell program: an action of type
IO () called main.

Haskell also provides a polymorphic function which displays data of any type that is an instance of
the Show class (i.e. any value that can be converted to a string):

print :: Show a => a -> IO ()
print = putStrLn . show

compiled at
2024-05-07 17:24:43+01:00

81 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 19. INPUT / OUTPUT

19.3 The do notation
Now we have covered the basics of how input and output functions in Haskell, it’s time to build a
program with it! As part of this, we need to consider how to sequence I/O actions so that they
complete in the correct order. Our example will consider:

1. Ask the user to enter any string

2. Reads in (but does not store) the string

3. Display a “done” message to the user

To ensure that these actions perform in the prescribed order, we must use the do notation:

readALine :: IO ()
readALine = do

putStrLn "Enter a string"
getLine
putStrLn "Done"

Note that each line in the do consists of an action of type IO a for some a.

19.4 Capturing Inputted Values
As we are now well versed in the getLine expression - it’s time to take it one step further, capturing
them into a named value so we can use it in the future! This is done using the <- operator and would
look something like this:

line <- getLine

This symbol might look, and operate, a bit like an assignment (commonly the = symbol) however it
is not an assignment! This means what we can do with line, without doing something else to it first,
is very limited.

19.4.1 Reading Integers

An excellent illustration of this behaviour is the case in which we are reading an integer from the
Standard Input. In this example, we’ll be writing our own action:

getInt :: IO Int

for reading an integer from the standard input.

To do this - we first need to use getLine to obtain a string from the standardInput:

do str <- getLine

We will then need to translate str into an integer using the read function, as declared in the Read
type class:

read str :: Int

(This forces a conversion to aInt using :: Int)
Putting these stages together, we have the following function to obtain an Integer inputted from the
Standard I/O

getInt :: IO Int
getInt = do

str <- getLine
return (read str :: Int)

compiled at
2024-05-07 17:24:43+01:00

82 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 19. INPUT / OUTPUT

19.4.2 Read

In the above example, we saw the read function be used to “read” the integer contents of the string
returned from getLine. An example of this in action can be seen below:

read " 456 " :: Int
456

19.5 File I/O
The Prelude comes with built-in functions for reading from and writing to files:

readFile :: String -> IO String
writeFile :: String -> String -> IO ()
appendFile :: String -> String -> IO ()

The first argument of each function is the file’s path; and the second is the contents (for write and
append) only.

The example function below displays the files content on the screen:

displayFile :: IO ()
displayFile = do

putStr "Enter the filename: "
name <- getLine
contents <- readFile name
putStr contents

19.6 Conditionals in do
As we saw in week 1, Haskell includes a conditional operator. This can be used within a do construct.
For example, in the following program - a string is read from the user and is then tested to see if it’s
a palindrome or not.

pal :: IO ()
pal = do

str <- getLine
if str == reverse str

then putStr (str ++ " is a palindrome")
else putStr (str ++ " is not a palindrome")

The test which is completed is of type Bool, and the branches are single actions. Note that if one of
the branches had two or more actions then these would need to be combined into another do construct.

An alternative solution to the above program is to move more of the computation to a normal function:

isPalindrome :: String -> String
isPalindrome str

| str == reverse str = str ++ " is a palindrome"
| otherwise = str ++ " is not a palindrome"

and then simplify the I/O program

pal :: IO ()
pal = do

line <- getLine
putStrLn (isPalindrome line)

This example illustrates a typical separation of the purely functional core of a program from its user
interface code.

compiled at
2024-05-07 17:24:43+01:00

83 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 19. INPUT / OUTPUT

19.6.1 Local Definitions in I/O Programs

It would be possible to break the last line of pal into two parts (separating the computation from the
output), as follows:

pal = do
line <- getLine
response <- return (isPalindrome line)
putStrLn response

However the middle line is ugly, we have had to introduce some IO (through introducing return) just
so we can use <-. There is a better way to do this with a local definition:

pal = do
line <- getLine
let response = isPalindrome line
putSrtLn response

19.7 Recursion
Like functions, IO programs can be recursive. The following program allows the user to enter several
lines, checking whether each one is a palindrome; it terminates when the user enters a blank line.

palLines :: IO ()
palLines = do

putStr "Enter a line: "
str <- getLine
if str == "" then

return ()
else do

putStrLn (isPalindrome str)
palLines

compiled at
2024-05-07 17:24:43+01:00

84 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 20. FUNCTIONAL PROGRAMMING IN PYTHON

Page 20

Lecture - Functional Programming in
Python
� 2024-04-22 � 12:00 � Matthew

This lecture is for information only; the content will not be assessed.

In recent years, functional programming concepts have become increasingly common in mainstream
imperative languages. These include languages such as: Python, JavaScript, C#, Java (from v8).
This lecture will introduce the concept of Functional Programming in Python.

20.1 Functions are Data in Python
When defining a function in Python, we are in fact introducing a new variable with the function as
it’s value. This can be seen below:

def f(arg):
return arg + 1

print(f) # prints <function f at 0xb56b11ec>
g = f
g(3) # returns 4
f = 7
f, g # returns (7, <function f at 0xb56b11ec>)

In the above example we can see the function, f, be defined then used. Then the data value of f (this
is the function) gets assigned to g and we re-assign f to 7. We finally return the values of f and g as
a tuple.

20.2 List Comprehension
Python’s list comprehension is very similar to that of Haskell’s. They work by forming a new list from
an old list.

>>> aList = [1, 2, 3, 4, 5]
>>> [2 * i for i in aList]
[2, 4, 6, 8, 10]

In the above example, we can see how we can use the keyword for and in to iterate through every
item in the list and multiply it by 2. The below example takes this further, discarding all values where
they are less than or equal to 3.

>>> [i * 2 for i in aList if i > 3]
[8, 10]

compiled at
2024-05-07 17:24:43+01:00

85 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 20. FUNCTIONAL PROGRAMMING IN PYTHON

In Python, tuples are indexed like lists, however they are immutable. In the following example, note
how you can iterate through a tuple containing list, using a for loop. This example is written in an
imperative way.

testData = [("Sam",67), ("Kate",35), ("Jill",75),
("Fred", 45), ("Alice",50), ("Bob", 38)]

def passed(lst):
names = []
for (name, mark) in lst:

if mark >= 40:
names.append(name)

return names

This is all well and good, however it’s a bit too imperative - we want to make it more functional, as
below:

def passed(lst):
return [name for (name, mark) in lst if mark >= 40]

20.3 Lambda Expressions
Python includes, in a similar way to Haskell, anonymous functions - called lambda expressions; for
example:

lambda x : x * 10

A lambda expression represents a function that multiplies its arguments by 10 (and is therefore similar
to the (*10) in Haskell).
Python also supports higher-order functions, for example the following function returns a function
which can then be called.

def multiplier(n):
return lambda x: x * n

Which can therefore be used:

>>> m10 = multiplier(10)
>>> m10(6)
60

20.3.1 Higher Order Functions

We recall that Haskell has the higher order functions map, filter and foldr. Python includes built-in
equivalents functions map, filter and reduce (which is almost equivalent to foldr).

Python’s map function takes a function and a list and gives a new list:

>>> aList = [2, 3, 4, 9, 4, 7]
>>> map(lambda x : x * 10, aList)
[20, 30, 60, 90, 40, 70]

The filter function gives a new list of only those elements that have a given property:

>>> filter(lambda x : x % 2 == 0, aList)
[2, 6, 4]

The reduce function takes takes a binary function (which is a function of two arguments), and a list
and then returns a single value. It applies the function to the first two elements of the list then on
the result and the next item and so on.

compiled at
2024-05-07 17:24:43+01:00

86 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 20. FUNCTIONAL PROGRAMMING IN PYTHON

>>> reduce(lambda x, y : x + y, aList)
31
>>> reduce(lambda x, y : x * y, aList)
9072

There is an optional third argument which can be passed as a ‘starting’ value:

>>> aList = []
>>> reduce(lambda x, y: x * y, aList, 1)
1

20.4 Benefits to Functions as Data
If we consider the following simple function which maps the number of days, based on the month
number passed as parameter:

def daysInMonth(month):
numDays = [31,28,31,30,31,30,31,31,30,31,30,31]
return numDays[month - 1]

We here have an inefficiency (no, not just the fact we’re using Python), in that for every time the
function is called - a new instance of numDays is stored in memory. So a possible solution to this
problem could be to define numDays as a global variable:

numDays = [31,28,31,30,31,30,31,31,30,31,30,31]
def daysInMonth(month):

return numDays[month - 1]

However, this is another bad idea - as it’s using a global variable. Another potential solution could
be to encapsulate it as a class and write the method as a static method, however this is also a bad
use of an OO concept and is overly complicated.

So, instead we use a closure:

def makeDaysInMonth():
numDays = [31,28,31,30,31,30,31,31,30,31,30,31]
def f(month):

return numDays[month-1]
return f

daysInMonth = makeDaysInMonth()

The returned function (which we’ve assigned to daysInMonth) has access to a local variable of another
function that has exited.

20.5 Recursion
Recursion fanboys will argue that using recursion instead of iteration will lead to simpler, more readable
functions. For example:

def fibonacci(n):
if n < 2:

return n
else:

return fibonacci(n-2) + fibonacci(n-1)

However, this function will suffer from a major issue of efficiency caused by the repeated computation
of intermediate results. We can attempt to solve this using a higher-order function. Our solution will
make use of a Python Dictionary.

compiled at
2024-05-07 17:24:43+01:00

87 of 88 Thomas Boxall

M21274 (DMAFP) PAGE 20. FUNCTIONAL PROGRAMMING IN PYTHON

20.5.1 Dictionaries

Dictionaries are unordered collections of data, whose values are indexed by key. Dictionary literals
are written as a sequence of key:value paris within braces ({ and }). For example:

>>> shopping = {"eggs" : 2, "ham" : 4}

Further notes on Dictionaries in Python are available in 1st Year Programming Module.

20.5.2 Memoization

Our solution to the recursive problem is to use a technique called memoization for remembering results
of calls to a function such as fibonacci. We can use a general purpose memoization function:

def memoize(f):
cache = {}
def g(arg):

if arg in cache:
return cache[arg]

else:
cache[arg] = f(arg)
return cache[arg]

return g

Which we can then give to the function we want to optimise:

fibonacci = memoize(fibonacci)

compiled at
2024-05-07 17:24:43+01:00

88 of 88 Thomas Boxall

	I Discrete Maths
	Lecture - Sets (2024-01-23)
	Lecture - Relations (2024-01-30)
	Lecture - Functions (2024-02-06)
	Lecture - Logic I: Introduction to Propositions & Logic (2024-02-13)
	Lecture - Logic II: Quantified Statements (2024-02-20)
	Lecture - Methods of Proof (2024-02-27)
	Lecture - Graphs: An Introduction (2024-03-12)
	Lecture - Walks, Trails, Paths (2024-03-19)
	Lecture - Trees (2024-04-16)
	Lecture - Network Models and Digraphs (2024-04-23)
	Lecture - Connectivity and Cuts (2024-04-30)

	II Functional Programming
	Lecture - Introduction to Functional Programming (2024-01-22)
	Lecture - Introduction To Functional Programming II (2024-01-29)
	Lecture - Pattern Matching & Recursion (2024-02-12)
	Lecture - Tuples, Strings & Lists (2024-02-12)
	Lecture - List Patterns and Recursion (2024-02-19)
	Lecture - Functions as Values (2024-02-26)
	Lecture - Algebraic Types (2024-03-11)
	Lecture - Input / Output (2024-03-18)
	Lecture - Functional Programming in Python (2024-04-22)

