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Async lecture - Introduction to Data
Structures and ADT
� 2023-09-30 � �

1.1 Data Structures
A Data Structure is a way to store and organise data in order to facilitate access and modification.
There is no single data structure which is perfect for every application - we need to choose the best
for whatever we are creating.

There are two parts to a data structure: a collection of elements, each of which is either a data
type of another data structure; and a set of associations or relationships (the structure) involving the
collection of elements.

1.1.1 Classification of Data Structures

Data structures can be classified based on their predecessor and successor.

Name Predecessor Successor Examples

Linear unique unique stack, queue

Hierarchical unique many family tree, management
structure

Graph many many railway map, social network

Set Structure no no DSALG class

Table 1.1: Classifications of Data Structures

1.1.2 Choosing the right Data Structure

When choosing a data structure, it is important to analyse the problem, determine the basic operations
needed and select the most efficient data structure. Choosing the right data structure will make
the operations simple & efficient and choosing the wrong data structure will make your operations
cumbersome and inefficient.

1.1.3 CRUD

CRUD Operations: Create, Read, Update and Delete are the basic operations which all data structures
must be able to do. It is common for a data structure to use a different name to refer to the operation,
however.
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1.2 Abstract Data Type

An Abstract Data Type (ADT) is a collection of data and associated methods stored as a single
module. The data within an ADT cannot be accessed directly, it must be accessed indirectly through
its methods. An ADT consists of: the data structure itself; methods to access the data structure;
methods to modify the data structure; and internal methods (which are not accessible from outside
the ADT).

1.3 Algorithms
An Algorithm is any well-defined computational procedure that takes some data, or set of data as input
and produces some data or set of data as output. It is the sequence of computational steps which are
gone through that transforms the input into the output which is the algorithm. The algorithm must
process the data efficiently (both in terms of time and space).

1.3.1 Classifications of Algorithms

There are a number of different classifications of algorithms - four are shown below. Definitions are
from National Institute of Standards and Technology - Dictionary of Algorithms and Data Structures

1.3.1.1 Brute-Force Algorithm

An algorithm that inefficiently solves a problem, often by trying every one of a wide range of possible
solutions. E.g. exhaustive search.

1.3.1.2 Divide & Conquer Algorithm

An algorithm which solves a problem either directly because that instance is easy (typically, this would
be because the instance is small) or by dividing it into two or more smaller instances. Each of these
smaller instances is recursively solved, and the solutions are combined to produce a solution for the
original instance.

1.3.1.3 Backtracking Algorithms

An algorithm that finds a solution by trying one of several choices. If the choice proves incorrect,
computation backtracks or restarts at the point of choice and tries another choice. It is often convenient
to maintain choice points and alternate choices using recursion.

1.3.1.4 Greedy Algorithms

An algorithm that always takes the best immediate, or local, solution while finding an overall answer.
Greedy algorithms find the overall, or globally, optimal solution for some optimisation problems, but
may find less-than optimal solutions for some instances of other problems.

1.4 Stack Abstract Data Type

A stack is a collection of objects where only the most recently inserted object (top) can be removed
at any time. A stack is linear and operates in Last In First Out (LIFO).

Stacks must support the following operations.

push add an item to the top of the stack

pop remove an item from the top of the stack

peek examine item at the top of the stack
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empty determine if the stack is empty

full determine if the stack is full

An application using a stack will expect the ADT to thrown an exception if: a push operation is re-
quested on a full stack; or a push / pop operation is requested on an empty stack. The stack manages
its own storage, therefore an application which uses a stack is not concerned with how the storage
used by the stack is managed. In general, an ADT is not interested in the application using the ADT.

Stacks can be implemented using a static array and have a number of uses, including: matching
brackets in arithmetic expressions; recursive algorithms; and evaluating arithmetic expressions.

1.5 Queue Abstract Data Type
A Queue is a collection of objects organised such that the first object to be stored in the queue is the
first to be removed and so on. It is a linear data structure with elements - inserted at one end (the
tail) and removed from the other (the head). A queue operates in First In First Out (FIFO).

Queues must support the following operations:

enqueue add item to the queue’s tail

dequeue remove item from the queue’s head

full check if queue is full (therefore total number of elements exceeds max capacity)

empty check if queue is empty

first check the first element (the head) in the queue

1.5.1 Implementations of a Queue

There are three different implementations of a queue, all of which can use a static array.

1.5.1.1 Fixed Head

The head of the queue is fixed, this means it will always be in index 0 of the static array. When an
element is dequeued, the rest of the elements in the queue must be shuffled along so that the new head
is in index 0. This is extremely time inefficient for large queues however quite space efficient as there
won’t be “dead space” at one end of the queue.

1.5.1.2 Mobile Head

The head of the queue is mobile, this means it can be in any index of the array. When an element is
dequeued, the rest of the elements in the queue stay where they are and the head pointer is updated
to represent the new head’s index. This is more time efficient however not space efficient as you may
end up with a lot of “dead space” where the head of the queue used to be.

1.5.1.3 Circular Queue

The queue is circular in a logical, not physical, way. This means the head and tail can be anywhere
in the array. If the head is not at the start of the array and the space is needed, the tail will loop
around to use the space at the start of the static array.
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BigO Notation is used to define the efficiency of an algorithm quantitatively. This is a very helpful tool
to have when designing algorithms as it allows us to compare multiple algorithms to and understand
which is the best one to use.

Name Notation Description

Constant O(1) Algorithm always executes in the same amount of
time regardless of the size of the dataset.

Logarithmic O(logn) Algorithm which halves the dataset with each
pass, efficient with large datasets, increases execu-
tion time at a slower rate than that at which the
dataset size increases.

Linear O(n) Algorithm whose performance declines as the
data set grows, reduces efficiency with increas-
ingly large dataset.

Loglinear O(N logn) Algorithm that divides a dataset but can be
solved using concurrency on independent divided
lists.

Polynomial O(N2) Algorithm whose performance is proportional
to the size of the dataset, efficiency significantly
reduces with increasingly large datasets.

Exponential O(2n) Algorithm that doubles with each addition to the
dataset in each pass, very inefficient.

Table 2.1: BigO Notation complexity values, listed best to worse

BigO doesn’t look at the exact number of operations, it looks at when the size of a problem approx-
imates infinity therefore two very similar algorithms which are slightly different may have the same
Big O despite one having double the number of operations.

2.1 Calculating The BigO Value

1. Determine the basic operations (including: assignment, multiplication, addition, subtraction,
division, etc)

compiled at
2024-01-13 15:56:56Z

5 of 56 Thomas Boxall



M21270 (DSALG) PAGE 2. TOOLS OF THE TRADE I: EFFICIENCY & BIGO

2. Count how many basic operations there are in the algorithm (some basic algebraic addition
required here!)

3. Convert the total number of operations to BigO (done by: ignoring the less dominant terms;
and ignoring the constant coefficient - i.e. 2n+ 1 becomes n).
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3.1 Searching Algorithms
When searching a dataset to find the item you are looking for, the aim of an efficient searching
algorithm is to exclude elements to reduce the searching space after each comparison.

3.1.1 Sorted vs Unsorted Data

Sorted data, when the data is in either ascending or descending order, makes it easier to locate the
item you are searching for. Depending on the algorithm, when using sorted data, we can exclude more
elements from the list to search.

Unsorted data, when the data is in a random order, makes it harder to locate the item you are
searching for. This is because you have to examine (in the worst case) every element in the array you
are searching to realise that the item you are searching for is not in the array.

3.1.2 Sequential (Linear) Search

1. Start at the beginning

2. Check every element of the array in turn until item located or the end of the array reached
(therefore item not located)

This search excludes one data item at a time, which is not great. It works on sorted and unsorted data.

The best case BigO is O(1). This is the case where the first item we examine is the item we want to find.

The worst case BigO is O(n) when the searched value is the last element in the array or not in the
array, n comparisons are required.

The average case BigO is O(n2 ) because if the data is distributed randomly, each element has an equal
chance to be the one searched for.

Overall, the BigO for a sequential search is O(n).

3.1.3 Binary Search

1. Check the middle element of the array
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2. If not found, work out which half of the array the item could be located in and exclude the half
which it won’t be included in

3. Repeat by searching the half array which may contain the required item by examining the middle
element and eliminating half the array

4. Process repeated on the halved array until either find the item or determine that it doesn’t exist.

A binary search only works on a sorted array.

The best case BigO is O(1). This is achieved when the value we are searching for is the middle element,
hence it is found on the first comparison.

The worst case BigO is O(log2 n), which is achieved when the value we are searching for is not found
in the array. We therefore need 1 + log2 n comparisons which gets converted into BigO.

The average case is O(log2 n), if the data is distributed randomly - each element has an equal chance
to be the one searched for.

The binary search algorithm has an additional cost - it requires a sorted sequence of data items, which
incurs cost if the data is not already sorted.

3.2 Sorting Algorithms
A sorting algorithm aims to make comparisons between data items and swap them according to the
desired order of the items. All sorting algorithms will involve two basic steps:

1. Compare items

2. Swap elements

3.2.1 Selection Sort

A selection sort works by sorting the array one item at a time. It divides the list into two parts. The
sorted section (on the left) is initially empty and the unsorted section (on the right) is initially the
complete unsorted list. The smallest (or largest, depending on if we want ascending or descending) is
selected from the unsorted array and swapped with the left-most element from the unsorted section.
The item is now in the correct final position within the ascending / descending order. The sorted part
has increased in size by 1. The process is iterated on the unsorted part of the array until all items
have been considered, the array will now be sorted.

The best case BigO is O(n2), when the array is already sorted hence each element only has to be
compared to its direct neighbours to establish this.

The worst case is O(n2).

Selection sorts are unsuitable for large data sets.

3.2.2 Bubble Sort

A bubble sort works by repeatedly passing through the list, swapping adjacent items if they are in
the wrong order. If sorting into ascending (or descending) order, the largest (or smallest) item will be
bubbled to the end of the array, hence the name. The process is iterated on the whole list until all
items have been considered, therefore the whole list will now be sorted.
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Without using a flag, the best case BigO is O(n2). The worst case BigO is also O(n2).

When a flag (variable which denotes when the array is sorted, enabling sorting to stop as soon as
array detected as sorted) is used, the best case BigO is O(n) and the worst case BigO is O(n2).

With or without the flag, the algorithm is very slow for large datasets.

3.2.3 Insertion Sort

An insertion sort works by sorting the list one item at a time. The list is split into a sorted and
non-sorted part. With each iteration, the next element waiting to be sorted (in the unsorted part) is
inserted in its correct location within the sorted list. The process iterates through the whole list until
all items have been considered; when completed, the list will now be sorted.

The best case BigO is O(n), when the data is already sorted. The worst case BigO is O(n2).

This algorithm is efficient for sorting nearly-sorted lists.
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4.1 Introduction
Computers are better at repeating themselves than humans are. Humans get bored, computers don’t.

Iteration is explicit repetition of code. We often use for and while loops to repeat sections of code,
both of which use control variables to control the repetitions.

Recursion is an alternative method of repeating code, where the code is repeated implicitly. Recursion
occurs when a function or method calls itself.

4.2 Recursion

Recursion is a technique whereby a problem is expressed as sub-problems in a similar / same form to
the original problem but smaller in scope. The sub-problems only differ in input or size. Shown below
is an example of a recursive algorithm, that never ends.

recursive_print_example(i){
print(i)
recursive_print_example(i+1)

}

Recursion is applied to problems where: a solution is easy to specify for certain conditions (the stop-
ping case, which is required or the program will continue indefinitely); and rules for proceeding to a
new state which is either a stopping case or eventually leads to a stopping case (recursive steps) are
identified.

Shown below is an actual recursive algorithm with its output:

cheers(int times){
print("hip)
if (times > 0){

cheers(times - 1)
}
print("hooray")

}
//outputs: hip hip hip hooray hooray hooray
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4.3 Pitfalls of Recursion
Recursion must always be used with care and understanding. It is possible to write compact and
elegant recursive programs that fail spectacularly at runtime. The main pitfalls of recursive algorithms
are as follows:

• Forgetting the stopping case

• Failure to reach a stopping case

• Excessive use of space

• Excessive repeated computations

There are some times, when you really shouldn’t use recursions:

• When the algorithm / data structure is not naturally suited to recursion

• When the recursive solution is not shorter and understandable than the linear solution

• When the recursive solution doesn’t run in acceptable time limits and / or space limits

• When the intermediate states of the algorithm don’t pass the same data to / from them.

Recursion to be continued next week.
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The BigO value of a recursive algorithm is generally way worse than that of a linear algorithm which
is performing the same function. Both the time and space efficiency is worse - as it will involve more
operations and take up considerably more memory due to the number of function calls made.

5.1 Merge Sort
The Merge Sort is an example of a divide and conquer algorithm. This means it works by dividing
the bigger problem into smaller problems which can then be solved independently, making it easier to
program. The smaller problem’s solutions will then be combined back together to make the overall
solution. The outline of how it works is shown below:

1. Continually divide the array of data, which needs to be sorted, into two equal halves; continue
doing this operation on each newly-created array until we have one element in each group. Note:
if there is only one element in the list, it must be sorted (this is the stopping case of the recursive
algorithm).

2. Merge the smaller arrays in to one large sorted array, merging one array with another array at
a time. Repeat this until the entire array is sorted.

5.2 QuickSort
This is another example of a divide and conquer algorithm. The outline of how it works is shown
below.

1. Pick a pivot value (this will be an item in the array)

2. Put all values less than the pivot into one array and all those bigger than the pivot into another.
Recursively repeat this until you end up with just one element in the arrays at the end (these
will be the biggest and smallest elements in the array).

3. Merge back together as the pivot values will now be in the correct order.

The best case BigO is O(n log2 n) which is achieved when the pivot splits into two equally sized parts
each time.

The worst case BigO is O(n2) where the pivot is split into very unequal sizes.

The average case BigO is O(n log2 n).
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5.3 Backtracking
Backtracking is a type of algorithm which continually searches for a solution by constructing partial
solutions, using the correct parts of the solution to be the starting point for the next solution attempt.
It is a trial and error algorithm.

When the algorithm finds an incorrect partial solution, it returns “up” a layer to where it had a closer
match to the correct solution and tries another branch. The algorithm is complete when either all
possibilities have been exhausted or the item has been found.
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6.1 Linear Data Structures: a recap

A linear data structure is a collection of nodes (elements) where each node has a unique predecessor
and unique successor. We saw in Workshop 1 that there are also other types of data structure where
there can be many predecessors and many successors.

6.1.1 Example: Static Array

A static array is a static sized structure, which is different from a dynamic sized structure for example
the ArrayList in Java. The advantage to using a Static Array is that there is faster access to each
node providing as the node is known, with a BigO of O(1) to visit arr[i]. The disadvantages of
using a static array is that its fixed size means it cannot be easily extended (as there has not been
enough space allocated in memory) and it cannot be reduced (as there would then be wasted space in
memory); static arrays can also be expensive to maintain in terms of time, especially for a group of
sorted elements.

CRUD Operation Data type Efficiency

Searching
Unsorted Data (linear search) O(n)

Sorted Data (binary search) O(log2 n)

Insertion
Unsorted data O(1)

Sorted data O(n)

Deletion
Unsorted data O(1)

Sorted data O(n)

Table 6.1: Efficiency of CRUD operations for a static array

The increased BigO value for the sorted array is due to the fact that the current elements have to
be shifted within the array to maintain the sorted status, which obviously increases the number of
operations which need to be performed.

6.2 Linked List
A linked list is a collection of objects called nodes. Every node has 2 components - information to be
stored (the data) and the reference to the next node in the list (the link). A linked list is s dynamic
data structure, which means the number of nodes in the list is not fixed and it can grow or shrink on
demand.
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6.2.1 Singly Linked List

This is the most common type of linked list whereby each node is only linked to one predecessor and
one successor - exceptions being the head which is only linked to one successor and the tail which is
only linked to the predecessor.

Figure 6.1: Singly Linked List

Advantages of using the Singly Linked List is that it is easily extendable or reduced to fit the data
needing to be stored in it. Once the item is located - it has efficiency O(1) to insert or delete the item.

The significant drawback of a SLL is that it does not allow direct access to individual items; to
find an individual item - you have to start at the head and follow references until you find the item
you’re looking for, which has the efficiency O(n). Another disadvantage is that it uses more memory
compared to a static array as the reference to the subsequent node also has to be stored.

6.3 Other Types of Linked Lists
Alongside the SLL, there are other types of Linked Lists which we may come across.

6.3.1 Singly Linked List with Dummy Nodes

A significant issue with the SLL is that the head item has to point to something. The idea of using a
dummy node is that this is the first node in the list which then means the head element can always
point to something, even if it is an empty node which makes the code more efficient.

6.3.2 Circular Linked List

In this linked list, the tail node points to the first node after the head (which is the first node to
contain data). This is useful for a list which undergoes a large number of traversals.

Figure 6.2: Circular Singly Linked List

6.3.3 Doubly Linked List

In this linked list, each node is linked to both its predecessor and successor in a way such that the list
can be traversed in either direction.

Figure 6.3: Doubly Linked List
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6.3.4 SkipList

A SkipList is an extension of an ordered SLL with a number of additional forward links added in
a randomised way. The data in the list does have to be ordered, however, as during searching the
elements in the array - bits of the list can be skipped to reduce the searching space quickly (like in
a binary search). This leads to having an efficiency on all CRUD operations of O(log2 n), which is
logarithmic random time.

The ideal SkipList would have half of the nodes having one reference to a subsequent node; 1
4 would

have 2 references to subsequent nodes; 1
8 will have 3 references to subsequent nodes; and so on. The

distance between nodes on on each ‘level’ would be equal.

SkipLists aren’t guaranteed to give good performance. Their performance depends on how many nodes
are skipped at each level. For searching, the best case will be O(1) and the worst case will be O(n).

Figure 6.4: SkipList

compiled at
2024-01-13 15:56:56Z

16 of 56 Thomas Boxall



M21270 (DSALG) PAGE 7. HERARCHICAL DATA STRUCTURES

Page 7

Async lecture - Herarchical Data
Structures
� 2023-11-02 � �

7.1 Why Another Data Structure?
The highest priority of any programmer when thinking about handling data is to ensure that the data is
structured in a way to ensure that all the required operations to be performed on the data are efficient.

We have already learnt about a number of data structures: Static arrays which are fixed size; linked
list which are dynamic sized; and SkipList which is also dynamic. The Static Array and SkipLists
can be searched using a binary search permitting they are sorted however the Linked List can only be
searched in a sequential fashion due to it’s nature.

7.2 Hierarchical Data Structures

A hierarchical data structure (commonly a tree) consists of a collection of nodes where each node has
a unique predecessor and many successors.

There is some key terminology to be aware of when discussing Hierarchical Data Structures, this is
outlined in the table below and makes use of the following example of a tree.

Figure 7.1: Example of a Hierarchical Data Structure
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Terminology Definition Example

Tree A set of interconnected nodes
with no closed circuits or loops

Subtree A tree rooted an internal node of
the tree

Tree rooted at node B is a sub-
tree of the given tree

Leaf (terminal node) Any node of the tree which has
no subtrees

The nodes containing D, H, F, I
and J

Root node The first node of the tree The root node of the above tree
is A

Branch A link between two nodes within
the tree

Degree of a node Number of subtrees of that node The degree of the node contain-
ing A is 2; and B is 3

Level of a node Number of branches on the path
from the root to the node

The level of nodes B and C is 1;
H, I and J is 3; A is 0

Height / Depth of a tree Number of nodes on the longest
path from the root node to a leaf
node

The above tree has height 4;
height of a tree containing one
node is 1.

Table 7.1: Efficiency of CRUD operations for a static array

7.3 Binary Trees and Binary Search Trees

Binary Trees (BT) are a special case of tree where every node is of degree two or less. A Binary Search
Tree (BST) is a special case of Binary tree where: the keys in the left subtree of the root precede the
key in the root; the key in the root node precedes the keys in the right subtree; and the left and right
subtrees of the root are also BSTs.

7.3.1 Searching

The algorithm to search a BST is based on the normal Binary Search algorithm (that we’ve used for
a static array).

The first item to be evaluated is the root node, if this is the required item the we can stop our search.
If the required item comes before the data item in the root node then we search the left subtree; if
the required item comes after the data item stored in the root node then we search the right subtree.
This process continues until either we find the required item or we reach a leaf node (hence the item
is not in the BST).

7.3.2 Constructing a Binary Search Tree

When constructing a BST from scratch, you take the first data item you’ve been given and use that
as the root node. From there add each data item as a child node, ensuring to maintain order.

7.3.3 Special Names for cases of Binary Trees

A binary tree is full if every node other than the leaf nodes has two children.
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A binary tree is complete if all levels, except possibly the last level, are completely full and the last
level has its node on the left side.

A balanced tree is one in which all path from the root node to the leaf nodes are of the same length.

7.3.4 Deletion of a node from a BST

In the case that the node we want to delete is a leaf node, we simply delete it.

In the case that the node has a single subtree then we simply replace the node to be deleted with the
root node of the subtree.

In the case that the node to be deleted has two subtrees, we do something. Dalin hasn’t actually told
us what yet as that would be far too simple.

7.3.5 Traversal of Binary Trees

To traverse a data structure requires us to be able to access each node of the data structure once and
only once in a predetermined sequence. Traversal of a tree is considerably more complex than that of
a Static Array or even a Singly Linked List. There are two distinct approaches which can be taken
to traverse a binary tree: DFT and BFT. Within each approach, there are sub-approaches - each of
these will be explored below.

All examples shown below will make use of the following tree

Figure 7.2: Binary Search Tree used in traversal examples

7.3.5.1 Depth First Traversal

Depth First Travel (DFT) proceeds along a path from the root to the most distant descendent of the
first child passed through before processing the second child. A stack is used to implement this.

The Depth First Traversal operates on the basis that we need to do three things: Visit the node (V),
traverse the Left subtree (L), and traverse the Right subtree (R). There are three orders we do this
in: VLR (PreOrder Traversal), LVR (InOrder Traversal) and LRV (PostOrder Traversal).

PreOrder Traversal In PreOrder Traversal, the binary tree is traversed as follows:

1. Visit the root node

2. PreOrder traversal of the left subtree

3. PreOrder traversal of the right subtree
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Using the above example tree, a PreOrder Traversal would result in the following route: 9, 4, 2, 8, 13,
10, 25

InOrder Traversal In InOrder Traversal, the binary tree is traversed as follows:

1. InOrder Traversal of the left subtree

2. Visit the root node

3. InOrder traversal of the right subtree

Using the above example tree, an InOrder Traversal would result in the following route: 2, 4, 8, 9, 10,
13, 25

PostOrder Traversal In PostOrder Traversal, the binary tree is traversed as follows:

1. PostOrder Traversal of the left subtree

2. PostOrder Traversal of the right subtree

3. Visit the root node

Using the above example tree, a PostOrder Traversal would result in the following route: 2, 8, 4, 10,
25, 13, 9

7.3.5.2 Breadth First Traversal

Breadth First Traversal (BFT) proceeds horizontally from the root to all of its children then to its
children’s children and so on until all nodes have been processed. To implement this traversal, a queue
is used.

Using the above example tree, a Breadth First Traversal would result in the following route: 9, 4, 13,
2, 8, 10, 25.
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8.1 Complexity of Binary Search Trees
When discussing the ideal case in a binary search tree - the tree will be balanced, or nearly balanced,
as this minimises the height of the tree. This is important as the height f the tree relates to the
number of comparisons we have to make whereby we make one comparison on each level. The worst
case refers to the situation where there is only one node per level.

Operations Ideal Case Worst Case

Searching O(logn) O(n)

Insertion O(logn) O(n)

Deletion O(logn) O(n)

Table 8.1: Complexity of a Binary Search Tree

8.2 Self Balancing Tree
A elf balancing tree automatically keeps its height as small as possible at all times. It does this by
performing “rotations” which reduce the height. These rotations change the structure of the tree
without changing the order of elements therefore it remains a binary search tree.
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8.2.1 Tree Rotation

Figure 8.1: Example of a rotation of a tree

Tree rotation is used to change the structure of the binary search tree without chainging the order of
the elements, thus after a rotation the tree is still a valid BST.

There are two popular approaches to implementing a self balancing tree - AVL Tree and Red-Black
Tree (the later is not covered in the scope of this module).

8.3 AVL Trees

The AVL Tree is a type of Binary Search Tree which is named after it’s inventors (Adelson, Velskii,
and Landis). A BST is a valid AVL tree where:

1. the heights of the Left Subtree (LST) and Right Subtree (RST) of the root node differ by at
most 1; and

2. LST and RST are AVL trees (this means we define it recursively)

8.3.1 Balance Factors

Each node of an AVL Tree contains and additional variable called the balance factor. The balance
fator of a node can be calculated as follows

balanceFactor = heightLST − heightRST

We can use the balance factor to determine if a node is balanced or unbalanced. If the balanced factor
is −1, 0 or +1 then the node is balanced. Whereas if the node has a balance factor of −2 or +2 then
the node is unbalanced; this will also require rotation to be carried out so that the tree can become
balanced.

8.3.2 Creating an AVL Tree

Much the same as a BST or a BT, an AVL tree is created as the data items are inserted as nodes.
Initially the tree is empty, this means it satisfies the rules for an AVL tree. As data items are inserted,
the balance factor of each node will change (nodes with balance factor ±1 may be changed to ±2).
Where the balance factor is ±2 then the tree is unbalanced and as such a rotation must take place.
Rotation will take place around the unbalanced node which is closest to the most recently inserted
node.
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8.3.2.1 Rotations of an AVL Tree

There are only four possible rotations which can take place within an AVL tree, two single and two
double.

Single Rotations:

• Left-Left Rotation (LL)

• Right-Right Rotation (RR)

Double Rotations:

• Left-Right Rotation (LR)

• Right-Left Rotation (RL)

These rotations take place around the unbalanced node with a balance factor of ±2.

The types of rotations are demonstrated below through use of an example. In the diagrams, the left
hand tree shows the pre-rotation and the right hand tree shows the post-rotation layout.

8.3.2.2 Left-Left Rotation

The unbalanced node and the left subtree of the unbalanced node are both left heavy. The balance of
the unbalanced node is +2 and the balance of the left child of the unbalanced node is +1. The tree is
rebalanced by completing a single rotation to the right around the unbalanced node.

Figure 8.2: AVL tree rotation (Left-Left)

In the above example, the node containing 3 has just been inserted into the AVL tree - causing the
node containing 8 to be unbalanced, therefore we rotate to the right about 8.

The pseudocode for the left-left rotation is as follows:

temp = root.left
root.left = root.left.right
temp.right = root
root = temp
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8.3.2.3 Right-Right Rotation

The unbalanced node and the right subtree of the unbalanced node are both right-heavy. The balance
of the unbalanced node is −2 and the balance of the right child of the unbalanced node is −1. The
tree is rebalanced by completing a single rotation to the left around the unbalanced node.

The Right-Right rotation is the mirror operation to the Left-Left rotation.

Figure 8.3: AVL tree rotation (Right-Right)

In the above example, the node containing 7 has just been inserted into the AVL tree causing the
node containing 3 to become unbalanced. Therefore we rotate to the left about 3.

The pseudocode for the right-right rotation is as follows:

temp = root.right
root.right = temp.left
temp.left = root
root = temp

8.3.3 Right-Left Rotation

The unbalanced node is right heavy and the right subtree of the unbalanced node is left heavy. The
balance of the unbalanced node is -2 and the balance of the right child of the unbalanced nodes is
+1. This tree cannot be rebalanced by a single rotation - two rotations are required: a right rotation
around the child followed by a left rotation around the unbalanced node.

Figure 8.4: AVL tree rotation (Right-Left)
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The first rotation rotates node C right around node B, this results in the middle diagram. The second
rotation rotates node A around node C, this results in the final state of the tree.

The pseudocode for the right-left rotation is shown below:

// setup
t1 = root.right
t2 = t1.left
// rotation 1: right
t1.left = t2.right
t2.right = t1
// rotation 2: left
root.right = t2.left
t2.left = root
root = t2

8.3.4 Left-Right Rotation

The unbalanced node is left-heavy and the left subtree of the unbalanced node is right-heavy. The
balance factor of the unbalanced node is +2 and the balance factor of the left child of the unbalanced
node is -1. This tree cannot be rebalanced by a single rotation - two rotations are required: a left
around the child, followed by a right rotation around the unbalanced node.

Figure 8.5: AVL tree rotation (Left-Right)

The first rotation rotates node C left around node B, resulting in the middle diagram. The second
rotation rotates node A right around node C, resulting in the right diagram.
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Another type of tree is a splay tree. These are self-organising binary trees which organise themself
such that recently accessed elements are always quick to access again.

9.1 Basic Operations

All basic operations (insertion, search, removal) are performed in O(log2n) time and they all include
an extra step called splaying.

Searching:

1. Locate node

2. Splay the node to the root

Insertion:

1. Insert node

2. Splay inserted node to the root

Deletion

1. Locate the node to be deleted

2. Replace node to be deleted with its in-order predecessor or its in-order successor (same process
as deletion in a BST)

3. Splay the parent of the removed node to the root

9.2 Splaying
Splaying is the movement of a node to the root, which is achieved through a series of tree rotations
which are similar to those used in AVL trees. Splaying works from the bottom to the top (root) of
the tree, which is often called bottom-up splaying. Splaying involves a series of double rotations, un-
til the accessed node reaches either the root or the child of the root when a single rotation is performed.

No single access operation on the Splay tree is guaranteed to be efficient, this is by design. The worst
case will be O(n), and the average across a series of operations tends to be O(log2n).

9.3 Rotations

9.3.1 Single Rotations

Single rotations are used when the accessed node S is the child of the root node P. The effect of this
rotation is to move the node up one level in the tree.
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9.3.1.1 Zig Rotation

There are two variations of the Zig rotation.

Figure 9.1: Splay tree rotations (Zig)

Rotation (a) is the equivalent of the LL rotation used with AVL trees; rotation (b) is the equivalent
of the RR rotation used with AVL trees.

9.3.2 Double Rotations

Double rotations involve the accessed node S, the parent P and the grandparent G. The effect of these
rotations is to move the node up two levels in the tree.

9.3.2.1 ZigZag Rotation

There are two variations of the zigzag rotation.

Figure 9.2: Splay tree rotations (ZigZag)

Rotation (c) is the equivalent of the RL rotation used with AVL trees; rotation (d) is the equivalent
of LR rotation used with AVL trees. The ZigZag rotations tend to make the trees more balanced, and
they will reduce the height of the tree by 1.

9.3.2.2 ZigZig Rotation

There are two variants of the ZigZig rotation.

Figure 9.3: Splay tree rotations (ZigZig)
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Pseudocode to the effect of rotation (e) is shown below:

G.left = P.right
P.right = G

P.left = S.right
S.right = P

Pseudocode to the effect of rotation (f) is shown below:

G.right = P.left
P.left = G

P.right = S.left
S.left = P
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10.1 Introduction
A multi-way search tree is a tree where:

• Each node contains one or two data items

• Every internal node has either two children or three children

• All leaves are on the same level therefore a 2-3 tree is always balanced

10.2 Nodes
There are two types of node, a 2-node and 3-node. The 2-nodes contain one item of data, and have
either 2 children or no children; they are equivalent to nodes in a binary tree. A 3-node contains two
items of data, and has either 3 children or no children.

The order of items behaves much the same as it does for a Binary Search Tree, where the values in
the Left-Subtree must be less than the first item in the the node. The right and centre subtrees rules
differ depending on what is present. If there is a center subtree, the values of all descendants in the
center subtree are less than the value of the second data item and values of all the descendants in the
right subtree are greater than the value of the second data item. If there is not a centre subtree (we
only have a left and right therefore it is a 2-node), the values in the right subtree are greater than the
value of the first data item.

Figure 10.1: The 2-Node and 3-Node
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10.3 Algorithms

10.3.1 Searching

Searching a 2-3 tree is similar to searching a BST.

10.3.2 Insertion

Insertion of a new value into a 2-3 tree is similar to that of inserting a new value into a BST as the
new value gets inserted into a leaf node; however, unlike a BST - a new child node is not created.

Insertion is carried out by locating the leaf node which should contain the new value: then if the
leaf node contains one data item - the new item is inserted into this leaf node and the insertion is
completed; however, if the leaf node contains two data items - space has to be created, which is
achieved by splitting nodes.

10.3.3 Splitting Nodes

The two data items in the node to be split and the data item to be inserted are treated the same.

1. Node is split into two nodes, L1 and L2

2. The smallest of the 3 data items is placed into L1

3. The largest of the 3 data items is placed into L2

4. The remaining data item (the middle one) is promoted to the parent node

If the parent node is a 2-node then the promoted node is inserted into the parent node along with
references to the two child nodes (L1 & L2) - this turns the parent node into a 3-node. However if
the parent node is a 3-node, then the splitting and promoting process is repeated until a place for the
promoted node is located; which may result in the creation of a new root node.

10.3.4 Deleting Nodes

Deleting a node in a 2-3 tree is similar to the process of deleting a node in a BST. If the item to be
deleted is in a leaf node (either a 3-node or 2-node), then it’s removed which will either leave a 2-node
leaf or a hole. If the item to be deleted is in an internal node (either a 2-node or 3-node) then it’s
replaced by its InOrder successor or Predecessor which will be in a leaf node (as is usual for a BST
deletion), this leaves either a 2-node or a hole. In the event we have a 2-node leaf, this is fine and we
can carry on; however if we have a hole in the tree - this needs to be removed.

To remove the hole, we traverse the 203 tree upwards towards the root. The hole is propagated
upwards through the tree until it can be eliminated; which is done by either being absorbed into the
tree or being propagated to the root of the tree where it can be removed, which reduces the height of
the tree by one (the only time when the height of the tree is reduced).

10.4 Comparison of a BST and a 2-3 tree
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Property BST 2-3 Tree

Nodes 2-node only (containing 1 element
and at most 2 children)

2-node and 3-node (containing 1
or 2 elements and at most 2 or 3
children)

Height dlog2(n+ 1)e and n between dlog3(n + 1)/2e and
dlog2(n+ 1)/2e

Constraint LST precedes the root and root
precedes RST

Similar to BST; all internal nodes
must have 2 or 3 children; leaf
nodes are at the same level.

Search Follow the path (either LST or
RST) until the element is located
or leaf node reached.

Similar to BST but with more
potential paths (LST, CST, RST).

Insertion Knowing the location, element is
inserted as a leaf node

Knowing the location, element is
inserted as a leaf node; then the
node is either kept or split (middle
element promoted)

Deletion The node containing the element
is deleted after being located; the
hole is replaced by the successor or
predecessor.

The element is deleted after being
located; the node remains with 1
element or becomes a hole (which
is replaced by its successor / pre-
decessor then propagated up the
tree and absorbed).

Table 10.1: Classifications of Data Structures
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11.1 B Trees
A B Tree of order m is a self-balancing multi-way search tree or order m which has the following
properties:

• Root node has either no children or between 2 and m children;

• Internal nodes have between dm
2
e and m children;

• All leaves are on the same level

Property 2-3 Tree B Tree

Nodes 2-node and 3-node (containing 1
or 2 elements and at most 2 or 3
children)

Can have different kinds of nodes
from dm

2
e − node to m− node

Number of Data
Items

For a tree of height h: between
2h − 1 and 3h − 1

For a tree of height h: between
(dm

2
e)− 1 and mh − 1

Constraint All leaves are on the same level All leaves are on the same level

Table 11.1: Comparison of the 2-3 Tree and B Tree

Each node in a B Tree represents a block (or page) of secondary storage. Accessing a node means
accessing the secondary storage, which is expensive when compared to accessing a node in main
memory - therefore the fewer nodes created, the better.

11.1.1 Algorithms

11.1.1.1 Searching

Searching a B Tree starts at the root node where you perform a Binary Search on the keys. If the
data is found, then the task is completed. If it is not found, follow the required branch to the next
node and repeat the process. If the node reached is a leaf node and the data item is not found then
the search is unsuccessful.
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11.1.1.2 Insertion

This algorithm is based on the insertion for 2-3 trees. The tree is searched to locate where to insert the
new data item (in a leaf node). If the node isn’t full then the data item is inserted into the node and
the insertion is complete. However, if the node is full, then the node is split into two and the middle
key promoted upwards into the parent node (which if full, also gets split and the middle promoted,
until space is found or a new root node is created).

11.1.2 Deletion

If the item to be deleted is not in a leaf node then its immediate predecessor or successor must be in
a leaf node; which will replace the deleted item. At this stage - it must be checked that the number
of data items left in the leaf node are not less than the permitted minimum number. If the leaf node
contains at least the minimum number of items - deletion completed. If the leaf node now contains
less than the minimum number of data items, an additional item needs to be found. This can be from
an adjacent leaf node if it has spare capacity, which can have one of its items moved into the node
missing an item; or if no adjacent leaf nodes have spare capacity then other nodes must be combined.

Figure 11.1: B-Tree

11.2 B* Trees

In a B* Tree, all nodes except the root must be at least two-thirds full. The frequency of splitting a
node is decreased bt delaying a split. When a node overflows, a split is delayed by redistributing the
keys between the node and its sibling; and when a split is made - two nodes are split into three.

11.2.1 B** Trees and Bn Trees

The increase in the “fill factor” of a tree can be done in a variety of ways. This can be seen where a
B Tree is used in a database system and where it allows for a user to define the fill factor as a value
between 0.5 and 1.0. A B Tree whose nodes are required to be at least 75% full is called a B** Tree;
which can be generalised as a Bn Tree is a tree whose nodes are required to be n+ 1

n+ 2
full.

11.3 B+ Trees
In a B+ Tree, the indexing of data items and their storage is separated. Only the leaf nodes contain
the data associated with each key / index, with the internal nodes just containing the keys. This
reduces the amount of data movement required to traverse the tree, which makes them more efficient.
The keys in the internal nodes are used to point a search in the direction of the leaf node which
contains the required data.

When implemented - the leaves often contain a key and a reference to the record of data, which allows
data files to exist separately from the B+ Tree, functioning as an index giving an ordering to the data
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in the file - therefore making it more efficient to search!

The B+ Tree is used as a dynamic indexing method in relational database management systems.

11.3.1 Algorithms

11.3.1.1 Insertion

Insertion for a B+ tree is much the same as insertion for a normal B tree, with the new record (key
and data) being inserted into to a leaf node. This is carried out by scanning the index to locate the
leaf node, which if it has space - the record is inserted. However, if it doesn’t have space then the
leaf node is split, this means that the new leaf node is included in the sequence and the records are
distributed evenly between the old and new leaves. Then, the index of the first record in the second
node is copied to the parent node as an index (without data, it exists here for referencing only); if the
parent isn’t full then the key is inserted into it’s correct position however if the parent is full then the
splitting process is performed as in a standard B Tree.

11.3.1.2 Deletion

The record to be deleted must be in a leaf node. Before deleting the record, it must be tested to see
if through deleting it, we will cause an underflow.

If it doesn’t cause an underflow, then delete the record. This doesn’t involve changing the index set.
This case stays the same if the key of the record is to be deleted but is also in the index set, as the
key is still required to guide a search through the B+ Tree.

If the deletion causes an underflow then, delete the record and either: records in the leaf & its siblings
are redistributed and the index updated; or the lef is deleted & remaining records included in its
sibling and the index updated.

11.3.2 B+ Tree Index Files

B+ Trees are used as an alternative to indexed-sequential files.

There are some disadvantages to using indexed-sequential files:

• Performance degrades as file grows - many overflow blocks created

• Periodic reorganisation of the entire file is required

Advantages of the B+ Files

• Automatically reorganises itself with small, local changes (during insertions and deletions)

• Reorganisation of the entire file is not required to maintain performance

Disadvantages of B+ Trees:

• Extra insertion and deletion overhead

• Space overhead (need to store the index plus the data)

Advantages of B+ Trees outweigh disadvantages:

• Used extensively.
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11.4 Comparison of B Tree Types

B Tree B+ Tree

Keys (indices) and data are not repeated Stores redundant keys and data

Data stored in all nodes Data only stored in leaf nodes

Searching takes more time as indices are not
separated from data that may be found in an
internal node or in a leaf-node

Searching for data is quick and easy as in-
dices are separate from the data, which can
be found in the leaf nodes only

Deletion of non-leaf nodes is very compli-
cated and time-consuming

Deletion is simple because data will be in
the leaf node only

Difficult and time-consuming to output a
sequential list of data

Quick and easy to output a sequential list of
data

The structure and operations are compli-
cated

The structure and operations are simple

Table 11.2: Comparison of the B Tree and B+ Tree
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12.1 Hashing
Hashing involves using an array for efficient storage and retrieval of information. As we are retrieving
information from an array - it has the efficiency O(1). This works by mapping the input key (data
item) to an output index of the array, which will not keep a sorted array of keys. However - due to
the fact the hashed input key is mapped to an index, we can efficiently retrieve that data item, in a
constant average time of O(1).

12.1.1 The Ideal Hash Table

The hash table is the table which stores the mapping from the input key to the output. This can be
represented in a number of ways, however it’s simplest is as a 1-Dimensional array.

If we take the scenario where there is a 1-D array of m entries with keys ki(i = 0 . . .m − 1) and
there exists a hash function H(ki) that uniquely maps keys ki onto the indices of the array (integers
0 through m− 1 (one-to-one mapping of keys)). Then we will see that the data item with key ki will
be stored in the slot of the table, at the known position h = H(ki). Therefore, the data item can be
accessed with one probe (O(1) time).

Continuing with the above example - what happens if our hashing function isn’t as good. This would
result in multiple keys being hashed to result in the same position. This is called a collision and they
are bad. Later in this lecture, methods will be explored on what to do when this happens. In reality
- the majority of hash functions will have collisions.

12.2 Hash Functions
A hash function is any function that can be used to support the following operations:

• Map an input key / value to a fixed-size (consistent format) output value

• The output value can be used as an index to locate data in storage

• All valid input keys / values have valid output indices after mapping

• Consistency - equal input keys must produce the same output hash value

A good hash function must be quick and easy to compute, minimise collisions and achieve an even
distribution of keys. The aim is for an efficiency of O(1) for storage and retrieval of data.
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12.2.1 Hash Function Families

12.2.1.1 Truncation

Truncation is where part of the key is ignored, with the remaining parts being used as the hash value
(the index which is used to store the data in the HT). This is fast however it can fail to distribute the
keys evenly.

12.2.1.2 Folding

Folding is where the key is partitioned into several parts, then these parts get combined (by addition
or multiplication) to obtain the hash value.

12.2.1.3 Modulo Arithmetic

Modulo Arithmetic is where the key gets divided by the table size and using the remainder as the hash
value. Where a good table size has been chosen (prime numbers generally work well), the spread of
hash values will be good.

12.3 Collision Reduction
As good as any hashing function can be, we will still run into collisions. Where there are collisions,
we are unable to achieve the ideal O(1) access time, as we will need to perform a secondary operation
to get to the data we are looking for. A good hashing function will reduce the number of collisions,
however we still need to be prepared to handle them. There are four methods we need to know about
on how to handle collisions, in reality there are many more.

12.3.1 Chaining

Chaining is a technique whereby a linked list is pointed to from the hash table. The linked list is used
to store the collided data items. The linked list behaves as any other linked list should, following all
its CRUD operations. A popular implementation choice of this is to store the head of the linked list
in the hash table’s slot. After getting the index of the data item through hashing, the data item is
retrieved by traversing the singly linked list.

i = h(x) // h is the hash function, x is the input key, i is the index
head = t[i] // t is the hash table
// t[i] maintains all data mapped to bucket/slot i
if the list is not empty

traverse the singly linked list until the target key is found
operations on the found data

end

The advantages / disadvantages of using chaining are shown below:

• The linked list in a slot only contains the keys of the same hashing index - easy to retrieve the
whole list of data items to match customised criteria.

• The dynamic nature of linked lists allows the storage of more data items than the table size and
can always increment - the hash table never needs to be resized.

• Singly linked lists require a sequential search - traversal is inevitable.

• Insertion to a singly linked list (normally unsorted) can be done either at the beginning or the
end of the list - efficient to conduct.

• Deletion in a singly linked list can be done by simply reassigning the links / pointers - efficient
to conduct.
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12.3.1.1 Searching

1. Hash the key into the table index

2. Search in the singly linked list maintained in the indexed slot

The average time consumption for searching a Hash Table which uses Chaining, is O(1).

12.3.1.2 Insertion

1. Hash the key into the table index

2. Insert the key into the Singly Linked List maintained in the indexed slot

The average time consumption is O(1).

12.3.1.3 Deletion

1. Hash the key into the table index

2. Delete the key from the Singly Linked List maintained in the indexed slot

The average time consumption is O(1).

12.3.2 Linear Probing

Linear Probing is part of the Open Addressing family of Collision Reduction Techniques; which han-
dles collisions by allocating the item which caused a collision to a different slot.

Linear Probing works by storing the collided data in the next available slot; this is completed by the
table index increasing by 1 until an available slot is found.

// h is the hash function, x is the input key, i is the index
i = h(x)
j = h(x)
k = 1 // k is the increment
while there is collision at index j // j is the target index

j = (i + k) mod n // the index increments by k or we say, linearly
k++ // n is the size of the table

end
operations on t[j] // t is the table

A significant issue with Linear Probing is that when most collisions happen at the same index, items
will begin to cluster. This is called Primary Clustering and complicates the searching, insertion and
deletion.

The advantages / disadvantages of Linear Probing can be seen below:

• Easy to compute.

• No extra consumption of keeping the pointers/links.

• Space can be fully used when the increment is set as 1.

• Table resizing may be required when the size of the problem increases.

• Primary clustering dependent on the quality of hash functions.
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12.3.2.1 Searching

1. Hash the key into the table index

2. Repeat incrementing the table index by 1 until the key or an available slot is found

The average time consumption will be O(1).

12.3.2.2 Insertion

1. Hash the key into the table index

2. Repeat incrementing the index by 1 until an available slot is found

The average time consumption is O(1).

12.3.2.3 Deletion

1. Hash the key into the table index

2. Repeat incrementing the table by 1 until the key is found and deleted

The average time consumption is O(1).

12.3.3 Quadratic Probing

Quadratic Probing is another member of the Open Addressing family. It works by addressing the pri-
mary clustering issues caused by Linear Probing by chaining how the index changes when a collision
occurs.

Quadratic Probing works by incrementing the index by a quadratic increment rather than a linear
one. For example - the collided index 1 keeps incrementing as 1 + 12, 1 + 22, 1 + 32, …, 1 + x2 until
an available slot is found.

// h is the hash function, x is the input key, i is the index
i = h(x)
j = h(x)
k = 1 // k is the input argument for the quadratic function
while there is collision at index j // j is the target index

j = (i + k^2) mod n
// the index increments by k^2 or we say, quadraticly
k++ // n is the size of the table

end
operations on t[j] // t is the table

Quadratic Probing removes the primary clustering which occurs with Linear Probing; however it isn’t
perfect as it creates its own type of clustering - Secondary Clustering.

12.4 Double Hashing
Double Hashing uses another hashing value to increment the collided index. This avoids both primary
and secondary hashing.

i = h(x) // h is the hash function, x is the input key, i is the index
j = g(x) // g is another hash function, j is the index increment
while there is collision at index i

i = (i + j) mod n // the index increments by j,
// another hashing value for each iteration

end
operations on t[i] // t is the table

compiled at
2024-01-13 15:56:56Z

39 of 56 Thomas Boxall



M21270 (DSALG) PAGE 12. HASH TABLES

Double hashing keeps incrementing the collided index by a hashing value until the target or an available
slot is found.
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Page 13

Async lecture - The Heap
� 2023-12-01 � �

13.1 Priority Queue
A priority queue is an Abstract Data Type which supports the two following operations:

• Insert an element into the queue with an associated priority

• Remove the element from the queue which has the highest priority

They generally get implemented using a static array, where they aren’t sorted by priority. Each index
in the array will contain the element and its corresponding priority. Insertion into the priority queue is
efficient, as we are just inserting into the first empty space; hence it has an efficiency O(1). However,
removing an element from the array isn’t as simple; we have to search sequentially through the entire
list to find the element with the highest priority, therefore it has an efficiency O(n).

13.2 Heap Data Structure
The heap data structure further develops on a priority queue’s inadequacies.

A heap is a binary tree with the following characteristics:

• It is a complete binary tree (see Hierarchical Data Structures)

• The key in the root is larger than the key in either child node and both sub-trees satisfy the
heap property.

In reality, the highest priority element would be stored at the root. This is also called a max-heap.
There is also a min-heap, which as the name suggests is the inverse of a max-heap with the lowest
priority at the root.

Figure 13.1: The Heaps
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13.3 Heap Algorithms

13.3.1 Insertion

As with all other types of Trees, the new item is inserted at the bottom level. It is inserted as the
next leaf on that level; which if full - it gets inserted as the first node on the next level on the left
hand side. Adding a new item to the heap will destroy the second property of heaps. This must be
rectified which is done so via moving the item up the tree until it ends up at the root or until it finds
parents & children which restore the heap property. This takes O(log2n) exchanges

13.3.2 Removal of a Node

The item at the root can easily be removed - this leaves us with two sub-trees from which we must
re-create a single tree that satisfies the heap properties. To re-create the tree, move the furthest right
leaf node to the root, then move nodes around internally to ensure that the heap properties are still
satisfied.

13.4 Heap Implementation
A heap can be stored using a static array. Due to one of the rules of a heap being it must be a
complete binary tree, this means a ‘row’ will always be full other than the final row. Therefore, the
indexes working down row by row and left to right on each row can just be stored in the array. The
indexes of parents and children can be calculated as seen below:

Index_LeftChild = Index_Parent * 2 + 1
Index_RightChild = Index_Parent * 2 + 2
Index_Parent = (Index_Child - 1) / 2

Heaps get used in a number of ways:

• Dijkstra’s Algorithm - find the shortest path tree in a graph

• Kruskal’s Algorithm - to find the Minimum Spanning Tree of a graph

• Huffman’s algorithm - text compression

• In a heap sort
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14.1 Data Compression
Data Compression aims to reduce the size of the data as much as possible, whilst representing the
information as accurately as possible. This is important because some uncompressed data can be
extremely large and through compression we are able to reduce its size therefore improve performance
when transmitting the data. Images, Text, Sound and Video can all be compressed; however this
workshop will only focus on the compression of Text data.

When transmitting compressed data - the sender and receiver of the information must understand the
encoding scheme used. To become compressed, the original data is passed through an encoder; and at
the other end - to obtain the decompressed data from the compressed data, we pass the compressed
data through a decoder. A formula can be used to calculate the compression ratio, which describes
the difference between the original data and a compressed version of itself:

compression ratio =
original data size

compressed data size
: 1

14.1.1 Lossless Data Compression

Lossless Data Compression is a technique where the original data can always be reproduced exactly
from the compressed data - no data is lost in the compression process. Lossless data algorithms are
used in text compression where we must be able to recreate the original data. Generally, Lossless
compression will achieve a compression rate of between 2:1 and 8:1.

14.1.2 Lossy Data Compression

Lossy Data Compression os a technique where the original data cannot be reproduced from the com-
pressed - the decompressed data differs to the uncompressed data we started with. This is fine for
many applications including audio, video and images, where the human eye / ear cannot perceive
minute details which can be lost; or where average people don’t have the required hardware to appre-
ciate the details. Audio can be compressed at a compression rate of 10:1, video can be compressed
at a compression rate of 100:1 and images can be compressed at a compression rate of about 10:1.
These won’t make obvious changes to the media however on very close inspection - changes may be
visible. However in some cases, lossy data compression may not imply a loss of quality and could lead
to an improvement in quality through reducing the amount of random noise in images, or removing
background noise in music.

14.2 Fixed Length Coding
Fixed Length Coding is a compression technique whereby the length of the codeword for each character
is the same - using either ASCII code or Unicode.
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If we take a string of 1000 characters, consisting of the characters a, u, x and z. Without compression,
this string requires 8000 bits to be stored in (derived from 1000 characters multiplied by 8-bits per
character using ASCII code). However - if we apply a compression algorithm to this, we can encode
the characters differently:

00 - a
01 - u
10 - x
11 - z

This means we now need 2000 characters to store the string (1000 characters multiplied by 2-bits per
character); and 48-bits to store the table (8-bits for the table size, 32-bits for the original letters, 8-bits
for the encoded letters (as 2-bit codes)). Therefore, the overall size of this string is 2048 bits, giving
us a compression ratio of 3.9 (8000

2048
)

14.3 Variable Length Coding
Variable Length Coding is a compression technique which is similar to Fixed Length Coding, except
it uses variable-length code words to represent the characters. This means the code-words used to
represent the characters differ in length, with shorter code-words being used to represent frequently
occurring characters and longer code-words used to represent less frequently occurring characters.

If we take the string aaxuaxz, the frequencies of the letters are shown below:
a - 3
x - 2
u - 1
z - 1

If we now establish codes for each of these letters, the encoded string will be 0010110010111 and the
codes are shown below:

0 - a
10 - x
110 - u
111 - z

Through using variable length coding, we have achieved a 1-bit size reduction as compared to the
same string being encoded using 2-bit codes in FLC. This difference scales up massively: if we give
the characters the frequencies 996, 2, 1, 1; then using FLC would give us a encoded version which is
2000 bits long and VLC would result in 1006-bits.

Decoding a VLC string is where it gets more complex as we do not know immediately how many bits
to pick off the string. We start from the left hand side and work left to right. We examine the current
and the next bit(s) and using the table of bits-to-character mappings we are able to determine what
bits correspond to a character. This works for this VLC example as all the codes start with 1 apart
from a’s which begins with 0 and they all finish with 0 apart from z’s which finishes with 1. This
means we are easily able to identify a chunk of bits which correspond to a character. As there are
only two edge cases to the rule, we are able to work around them.

14.4 Huffman Coding
Huffman coding is much like VLC, in that it assigns short code-words to characters with high frequen-
cies and longer code-words to characters with lower frequencies. The Huffman encoder takes a block
of characters with fixed length as an input then creates a block of output bits of variable length as an
output; the Huffman encoder is a fixed-to-variable length coder.
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14.4.1 Generating Huffman Codes

The first stage to generating Huffman Codes is to create a Huffman Tree. The Huffman codes are
then determined by following the path from the root to the leaf nodes.

14.4.1.1 Creating a Huffman Tree

A Huffman tree is a weighted binary tree where:

• The leaves of the Huffman tree are the characters to be encoded

• The branches of the Huffman tree are labelled with either 0 or 1 (this is used to determine their
code-word).

Initially, we have a forest of leaf nodes containing the characters and their frequencies. The Huffman
tree is created by:

1. Sorting the forest of leaf nodes by frequency

2. Combining the two nodes with lowest frequency

3. Creating a binary tree with parent node containing the frequencies of its children

4. Sorting nodes and repeating process until one node left (this is the root node)

Figure 14.1: Huffman Tree

The figure above shows the first stage of Huffman coding, generating the Huffman tree. The figure
below shows the next stage where we assign each branch a value (either 0 or 1, with 1 being assigned
to the right). From here we are able to work from the root node to the node we are interested in and
generate the Huffman Codes, as seen below.

F - 00
B - 01
C - 100
A - 101
G - 110
D - 1110
E - 1111
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Figure 14.2: Huffman Tree showing Code-Words

compiled at
2024-01-13 15:56:56Z

46 of 56 Thomas Boxall



M21270 (DSALG) PAGE 15. GRAPHICAL DATA STRUCTURES: PART I

Page 15

Async lecture - Graphical Data
Structures: Part I
� 2023-12-08 � �

15.1 Graphical Data Structures

The Graphical Data Structure (or Graph, for those who aren’t pretentious) consists of nodes where
each node has many predecessors and many successors. The need for graphs arise through the numer-
ous varieties of data structures we have explored thus far in this module not having the ability to have
many predecessors and many successors, which is required for applications such as a social network,
or transport map.

Graphs are used mostly when a linear and tree structure isn’t applicable.

15.1.1 Graph Theory

Graphs and their applications are based on Graph Theory:

• Shortest Path Problem: Graph traversal and path search with tradeoff between space and time

• Ramsey Theory: For any six people, either at least three of them are mutual strangers or at
least three of them are mutual acquaintances

• Graph colouring: No more than four colours are required to colour the region of the map so that
no two regions have the same colour

15.2 Graph Terminology

Term Definition

Graph A collection of nodes (called ‘vertices’) and line segments connecting
the vertices (called ‘edges’).

Undirected Graph A graph where each edge in the graph has no direction

Directed Graph (di-
graph)

A graph where each edge in the graph has a direction to it’s successor

Acyclic Graph A graph with no cycles

Directed Acyclic Graph A directed graph with no cycles. Abbreviated to ‘DAG’

continued on next page
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Term Definition

Adjacency Two vertices are adjacent if they are connected by a single edge

Path Sequence of edges

Cycle Path containing at least three vertices that starts and finishes with
the same edge

Degree The degree of a vertex is the sum of the adjacent vertices.

In a digraph: the out-degree of a vertex is the number of edges leav-
ing the vertex and the in-degree is the number of edges entering the
vertex

Sparse Graph A graph is said to be ‘sparse’ if there are only a few edges between
nodes

Dense Graph A graph is said to be dense if most of the edges between vertices are
present

Connected Graph A graph is connected if there is a path from any vertex to any other
vertex

Strongly Connected
Graph

A directed graph is strongly connected if there is a path from any
vertex to any other vertex

Weakly Connected
Graph

A directed graph is weakly connected if, on suppressing the direction
of the edges - the resulting undirected graph is connected

Disconnected Graph or
Disjoint Graph

This is a graph which is not connected

Weighted Graph These are graphs where the edges are assigned a weight; they can
be either directed or undirected; the weight can be used to represent
anything

Table 15.1: Graph Terminology

15.3 Graph Representation
There are two different methods as to which Graphs can be stored by. They differ in the way the nodes
and edges are maintained internally. If the graph is sparse then the adjacency list representation will
be more space-efficient than the adjacency matrix representation.

Property Matrix List

Space O(v2) O(v + e)

Vertex Insertion O(v2) O(1)

Vertex Deletion O(v2) O(v + e)

Edge Insertion O(1) O(1)

Edge Deletion O(1) O(e)

continued on next page
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Property Matrix List

Adjacency Check O(1) O(e)

Table 15.2: Comparison of Matrix and List representations
for Graphs (v vertices, e edges)

15.3.1 Adjacency Matrix Representation

This uses a n-by-n boolean matrix with one row and one column for each of the n vertices in the
graph.

Figure 15.1: Undirected graph represented in an Adjacency Matrix

If the element in the i-th row and j-th column is equal to 1, then there is an edge from the i-th vertex
to the j-th vertex. Therefore if the element in the i-th row and j-th column is equal to 0, then there
is not an edge from the i-th vertex to the j-th vertex.

Figure 15.2: Directed graph represented in an Adjacency Matrix

For weighted graphs, the element is either the weight of the graph or infinity (∞)
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Figure 15.3: Weighted graph represented in an Adjacency Matrix

A vector (1-D array) is used to store the vertices and a matrix (2-D array) is used to store the edges.

15.3.1.1 Observations

• The size of the graph (number of vertices) needs to be known in advance

• You cannot store duplicate edges, only one edge can be stored between vertices

• It takes O(1) time to determine if there is an edge between vertex u and v

• If the graph is sparse then a significant part of the adjacency matrix will be empty

• Undirected graphs are symmetrical around the diagonal therefore half the graph will contain
repeated information

• Inserting an edge into a directed graph takes O(1) time. Undirected graphs take double the time
as you have to insert two entries

• Deleting an edge from a directed graph takes O(1) time. Again, undirected graphs take double
the time as you have to clear 2 entries

• To determine the degree of a vertex, count all the non-zero entries in the corresponding row of
the adjacency matrix

15.3.2 Adjacency list Representation

The Adjacency List Representation of a Graph uses a set of Singly Linked Lists, with one for each
vertex. Each SLL contains all the vertices that are adjacent to the vertex. A SLL or array is used to
store the vertices in a ‘Vertex List’.
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Figure 15.4: Undirected graph represented in Adjacency List

For weighted graphs, the nodes of the SLL will contain the name of the vertex and the weight of the
corresponding edge.

15.3.2.1 Observations

• Flexible to use - it is easy to insert / delete vertices

• Allows for duplicated edges

• For undirected graphs - each edge is stored twice

• Space-efficient representation of a sparse graph

• To determine if there is an edge from vertex u to vertex v, requires u’s linked list to be searched.
For dense graphs, there may be many vertices in the linked list therefore this completes in O(n)
time.

• Inserting an edge to a directed graph takes O(1) time as it gets inserted at the head of the list.
Undirected graphs take double the time as two new nodes have to be added to two linked lists.

• Deleting an edge from a directed graph takes O(e) time as the program will need to traverse the
list to locate the corresponding vertex. This will take double the time for an undirected graph
as two deletions are needed.

• Determining the degree of a vertex requires the length of the corresponding linked list to be
found.

15.4 Searching A Graph

Figure 15.5: Generic Graph Searching Examples Graph
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15.4.1 Depth First Search

A Depth First Search (DFS) for a Graph data structure works much the same as a DFS does for a Tree
data structure with the pre-order traversal. For a Graph DFS, it will visit (process) all of a vertex’s
descendants before moving onto an adjacent vertex.

1. Assume all nodes are marked as “not visited”.

2. ‘Visit’ the start vertex (this can be any vertex)

3. Select an unvisited vertex which is adjacent & connected to the current vertex and visit that
one

4. Repeat step 3 until a dead end is reached (this will be where a a vertex has no adjacent vertices
left)

5. Backtrack to find another unvisited vertex and repeat steps 3 & 4 until all vertices have been
searched

The DFS uses a stack to store the unvisited vertices. An Iterative implementation for the DFS is
below:

Assume each vertex marked as 'not-visited' push first vertex onto stack
mark as visited
while stack not empty loop

pop vertex off stack
process the vertex
for each adjacent unvisited vertex

push vertex onto stack
mark as visited

end
end

A recursive implementation for the DFS is shown below:

Assume each vertex marked as 'not-visited' process first vertex
mark as visited
for all nodes adjacent to the vertex

if not visited then
perform Depth First Search

end
end

Using the example graph in the figure above, the DFS search would return the order: A. B, E, D, F,
G, H, J, C.

15.4.2 Breadth First Search

A Breadth First Search (BFS) for a Graph works much the same as a BFS (level-by-level search) of
a BST. In a graph, a BFS will start at a node and work out layer-by-layer through each connected
vertices. It works through the vertices adding un-visited adjacencies to it’s queue then visiting each
in turn and repeating the visiting & enqueueing at each, until every vertex has been visited.

The basic BFS algorithm for a graph is shown below:

Assume each vertex marked as “not-visited” enqueue vertex onto queue
mark as visited
while queue not empty loop

dequeue vertex off queue
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process the vertex
for each adjacent unvisited vertex

add vertex to queue
mark as visited

end
end

Using the example graph in the figure above, the BFS search would return the order: A, B, C, E, D,
F, H, G, J.
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16.1 Greedy Algorithms
A Greedy Algorithm is an algorithm which makes a decision that appears good in the moment, however
it doesn’t consider the future consequences of this decision. Once the decision has been made, it is
never reconsidered. We just have to hope that when the algorithm terminates, that it has found the
optimum solution - this is not consistently the case however.

16.2 Shortest Path Trees
A graph will commonly contain multiple paths between two vertices. A Shortest Path Tree of a given
graph is a tree that contains all the vertices (where one vertex has been selected as the root) and a
subset of the edges that shows the shortest path from the root to any other vertex with the shortest
distance.

They are commonly used in in applications such as a route planning app or within air travel planning
software. For both - the journey would have a start location (the source vertex) and a destination
(the sink vertex).

16.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is used to solve the problem of finding the shortest path from a given vertex to
a destination vertex within a graph. The algorithm works by finding the shortest path from a given
source to all the vertices in a graph at the same time; it is for this reason that it’s known as the
single-source shortest paths algorithm. It’s steps are outlined below:

1. Select the source vertex S which becomes the root of the shortest path tree.

2. For each vertex Vi that has a single edge from S, the distance is stored and the vertex is added
to a priority queue.

3. All other vertices not connected by a single edge to the source, S are given a distance of infinity.

4. The vertex R stored in the priority queue with the smallest distance from S is selected. The
vertex R is added to the shortest path tree.

5. For each vertex Wi adjacent to vertex R that has a single edge from R to another vertex, Wi -
the total distance from S to Wi is calculated. If this value is less than the value already stored,
then the value is updated and the vertex Wi is added to the priority queue.

6. The previous two steps are repeated until the priority queue is empty
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7. Any vertices not selected would indicate a disconnected graph - with no path, let alone a shortest
path, from the source vertex.

This algorithm is represented below in Dalin Script:

Clear Priority Queue
Add source vertex S to priority queue with distance of 0

For all other vertices
-- Shortest path from source not found
Add to priority queue - distance from source as infinity
Mark not yet added to shortest path tree

end
While priority queue not empty

Dequeue vertex R with shortest distance from source
Mark vertex R located
Add vertex R to shortest path tree
For each vertex W adjacent to R

If W not in shortest path tree then
If distance(R from S) + distance(W from R) < stored distance ...
... (W from S) then

Update details for W -- update priority queue
end

end

As is typical with graphs - the efficiency of Dijkstra’s algorithm is dependent on the way the graph is
stored. The efficiency of each iteration of the priority queue, when stored as a heap, is O(log2v). If
an adjacency matrix is used to implement the graph, the overall efficiency is O(v2 × log2(v)) whereas
if adjacency lists are used, the overall efficiency is O(ev × log2(v)).

16.3 Spanning Trees
A spanning tree is representation of a graph that contains all the vertices with only one path between
two vertices. A graph can have multiple different spanning trees. If the graph is disconnected or a
directed graph - we will get a spanning forrest.

A Breadth First Search of a graph gives a Breadth-First Spanning Tree; a Depth First Search of a
graph gives a Depth First Spanning tree. For disconnected graphs, more than one tree will be required
to span the graph, called a spanning forrest. For directed graphs - you may get a spanning tree or
spanning forrest.

A Minimum Spanning Tree with weight less than or equal to the weight of every other spanning tree.

16.3.1 Prim’s Algorithm

Prim’s Algorithm builds upon a single partial minimum spanning tree. It works by adding an edge
connecting the vertex nearest to but not already in the current partial minimum spanning tree. The
basic algorithm is shown below:

Initially tree consists of the start vertex
While not all vertices in tree

Examine all vertices in G with one end point in the tree and ...
... the other not in the tree. Find the shortest edge and add...
... to the tree (with the other vertex)

end
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16.3.2 Kruskal’s Algorithm

Kruskal’s Algorithm combines sets of partial minimum spanning trees. At each stage of the algorithm,
we add the shortest edge in the graph whose vertices are in a different partial minimum spanning tree.
The basic algorithm is shown below:

Partition the vertices of the graph into n sets - one vertex per set.
Initially the spanning tree is empty
While the tree is incomplete and there are edges left to add loop

Find the shortest edge not yet considered
If its endpoints are in different trees then

Join trees
end

end

The algorithm works by starting with a forest of trees, each containing one vertex. When an edge is
added between two trees, then its endpoints become part of a single tree - therefore each edge added
joins two existing trees into one single larger tree. The output from the algorithm is one tree - the
minimum spanning tree. The algorithm is shown below:

V = number of vertices in the graph
Make forests - put each vertex into a different tree
Put Edges into priority queue with end points referencing a tree
Set TotalLength = 0
Set EdgesFound = 0
While EdgesFound < V-1 and Queue not empty

Find shortest edge and endpoints P & Q in different trees
If end-points in different trees (i.e. no cycles)

Found valid edge
TotalLength = TotalLength + Cost of edge
Join Trees
EdgesFound = EdgesFound + 1

end
end

Kruskal’s algorithm uses the Shortest Bridge Property (where every time an edge is selected, it is the
shortest bridge between the trees it connects) and if these trees contain more than one vertex, they
have been made up from the shortest bridges.

The efficiency of Kruskal’s Algorithm is O(elog2e).
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