University Of Portsmouth
BSc (Hons) Computer Science
First Year

Programming
M30299
September 2022 - May 2023

20 Credits

Thomas Boxall
up2108121@myport.ac.uk

Thomas Boxall CONTENTS
Contents

1 Module Introduction 2
2 Writing Simple Programs 4
3 Computing with Data and Numbers 7
4 Graphics, objects and high quality code 10
5 Comuting With Strings & Files 13
6 Defining Functions 17
7 Decision Structures, IF Statements and While Loops 19
8 While Loops, Booleans and Further Loops 22
9 Design and Simulation 24
10 LECTURE: Using Lists, Tuples and Dictionaries 26
1 Object-Oriented Programming 30
12 Further Object Oriented Progrmaming 32
13 Debugging & Exception Handling 33
compiled at 10f 33 M30299

2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 1. MODULE INTRODUCTION

Pagel

Module Introduction

M 20-09-2022 ®14:00 = Nadim & Q PK2.23
Matthew

Module Aims

This module will build up programming skills either from scratch or from where you
are currently.

It will give you the basic knowledge; guidance, help and feedback to help develop
programming skKills.

Importantly, this module is 40 credits. It spans across the entire year.

Programming

Programming isthe process of constructing computer programs, thisencompasses analysing
the problem, designing the algorithm, implementing the algorithm and testing the algo-
rithm.

We write the programs in a programming language.

For the first 2 of the year, we'll use Python 3 and for the final 1 of the year, we'll use Dart.
Dart is similar to Java. We will be the first cohort to use Dart.

Programming is a skill, which can only be developed through practice and should be
fun! Having a good understanding and ability to program is important later during in
the course and for careers.

Module Organisation

For this module, there will be content shared on Moodle (notes for lectures and videos
complementing the notes) and timetabled sessions (in some, fundamental ideas will be
covered which will make it possible to complete the weekly worksheets). Worksheets will
be released weekly onto Moodle, these should be completed before the practical class of
the following week.

Monday at 3pm in RB LT1is the tutorial class. You need to go through the notes on Moodle
before the sessions.

Practical classes are 1 hour 50 minute sessions in a computer lab. The main purpose of
these is to get feedback on the worksheets.

Support

The academic tutors (Xia and Eleni) can be booked on Moodle.
There are drop-in sessions on Monday in the FTC. This session is optional and is designed
for targeted questions or issues which can't be resolved in the tutorial/ practical classes.

compiled at 2 0f 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 1. MODULE INTRODUCTION

Out Of Class Work

Should be spending about 8 hours per week outside of timetabled sessions working on
this module. This includes working through the worksheets.

Assessments

There are three types of assessment used throughout the year
- 5x 30min programming tests (held in class, weighted 5% each)

- 2x 60min Computer based multiple choice tests (weighted 15 % each, one in January
and one in May/June)

- 2x large programming assignments (weighted 20% and 25% respectively)

The programming tests will be based off of the previous weeks worksheets. There will be
a practice test in week 3 (so we can understand how they work)

Each of the programming assignments will have a few weeks in which they can be worked
on.

Resources

To write and execute Python programs, the recormmended IDE is Pyzo. Other IDEs can be
used however no support for configuration will be provided.

We will be using Python 3.x NOT Python 2.x.

The recommended book is called ‘Python programming: an Introduction to Computer
Science 3rd Edition’. There are a number of copies available in the library. Its ISBN number
is ‘9781590282755

compiled at 3 0f 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 2. WRITING SIMPLE PROGRAMS

Page 2

Writing Simple Programs

1 26-09-2022 ®15:00 ™= Nadim Q@ RB LT1

This lecture introduces the basic steps involved in programming and provides some ad-
ditional information about each stage.

Stages of Algorithm Design

When presented a problem to solve programmatically, the first stage to doing so is to
understand the problem and to ensure that this understanding is correct. To aid this, it
can be useful to work out how the user interacts with the system, through listing the user
inputs and outputs to screen. At this stage, it can also be beneficial to make a note of
some inputs and their expected outputs as this can be used to test the program at the
end of development.

The next stage is to design an algorithm that accomplishes the task.

Algorithm

A detailed sequence of actions which acomplish a task. Cna be written in plain En-
glish or any other language.

The next stage is to implement the algorithm. This is where the plain English algorithm
is converted into programming statements which can be executed by the machine.

The final stage is to test the program. This can be done ith the data noted down in stage
one.

Key Program Concepts

In programming, there are a number of key concepts. These will be illustrated using ex-
amples written in Python 3.

Statements

Every line of a program is called a command or statement. These are executed (carried
out) one after the other (there are ways in which the flow of the program can be altered,
but this will be covered at a later date). Program execution ends after the last statement
is executed.

Variables

A variable is a name for a part of the computer memory where a value is stored. The
variables have names in the programs.

Statementsinthe program may create a new variable, use the value of a variable or change
the value of a variable.

compiled at 4 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 2. WRITING SIMPLE PROGRAMS

Assignment Statements

Assignment statements are used to assign a value to a variable. The syntax is as follows:
- The variable appears on the left hand size of the =

- The right hand side of is an expression, which has a value

LANGUAGE: Python3

1 variableName = expressionWhichHasAValue

Assignment statements are executed in two steps. First they evaluate the expression on
the right hand side then second, assign the value to the variable on the left hand side.

If the variable on the Ift hand side doesn't already exist, then it is created. If the variable
exists already, its old value is replaced.

Numeric and String Values

Numeric values are numbers. They do not need any demarcation. For example, 2.2 is a
numeric value.

String values are strings of characters. These can be any character. Strings need to be
encased in single quotes or double quotes. Both are valid, however they can't be mixed.
Lines1and 2 in the following example are valid, however line 3 is not.

LANGUAGE: Python3

validStringOne
validStringTwo
invalidString =

W N

Arithmetic Expressions

Standard arithmetic expressions can be formed using +, -, ¥, / and (). Expressions are
evaluated to give a value, this is commonly stored in a variable or outputted directly to
the user.

Built-In Functions

Python has a number of built-in functions. These are algorithms which are part of the
Python language. They can be accessed by using its name. Sometimes they have param-
eters, sometimes they return a value and sometimes they do both. Common examples of
built-in functions are shown below.

LANGUAGE: Python3

1 ()

2 variable = ()

Example Execution

See Week 1, lecture Olc slides on Moodle for a detailed look at how programs execute
and how the variable contents change.

compiled at 5 0of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 2. WRITING SIMPLE PROGRAMS

Example programs from Lecture

Program 01

This program introduces a count-controlled loop (for loop) and the print statement.

LANGUAGE: Python3

1 total = 0

2 i (34):

3 #print ("banana")

4 #print (i)

5 total = total + i

6

7 (, total)

This program should output the following

LANGUAGE: Unknown

I The total is: 561

The two commented out lines (lineswhich begin with the #) symbol can be un-commented
so that they run.

Program 02

This program introduces the concept of input (), int () and subroutines.

LANGUAGE: Python3

simpleProgram() :

1

2

3 value = (())
4

5 loopCount (value):

6 (loopCount)

8 H#HHHHAAHHHARHHHAS
9
10 simpleProgram()

The program should output the following.

LANGUAGE: Unknown

Please enter a whole number: 12
0

[o IR o) B U5 B SN ORI N

N = O W

1
2
3
4
5
6
7
8
9
1
1

= O

[N

The number 12 on line one is entered by the user.

compiled at 6 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 3. COMPUTING WITH DATA AND NUMBERS

Page 3

Computing with Data and Numbers

#h 03-10-22 ® 1500 ™= Nadim Q@ RB LT1

Data and Data Types

There is a lot of data which programs have to process. Different types of data are stored
as different ‘Data Types/, this allows them to be processed differently; an example of this is
numerical data. In programming, we commonly distinguish between two different types
of numerical data: integers (whole numbers, eg 55, 77, 88, -5) and fractional number (or
floating point numbers, eg 4.6, 7.00956, -9.89). Words and other multi-character state-
ments can be written within strings and truth values are stored as booleans.

All data values belong to one single data type and in some contexts, we use Class rather
than data type.

Python Data Types

Python has all of the common data types within it. Each of the data types have a specific
keyword:

Type Python Keyword | Example
Integer int 33
Fractional float 2.3
String str "Spam"
Boolean bool True

Operations on Data Types

Data types have operations associated with them, some of these are language specific
functions however the majority are universal across most programming languages.

For example, int and float both have the operations +, -, *x and /.

Numeric data types follow the operator precedence rules, as a human would with math-
ematical equations. They follow BIDMAS. Where two operators have equal precedence,
the calculations are carried out from left to right.

Type Conversions

It is important to be able to convert between different data types. The following example
code shows the different functions.

LANGUAGE: Python3

1 # convert 5 (int) to float, equals 5.0
2 floatVariable = (5)
4

. # convert 4.5 to int, this truncates, so will equal 4

compiled at 7 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 3. COMPUTING WITH DATA AND NUMBERS

intVariable (4.8)

convert 6.8 to a string, equals "6.8"
strVariable = (6.8)

It can be useful to find out what data type a variable or value is. To do this, use the type)
function as seen below.

LANGUAGE: Python3

1 ((44)) # outputs <class 'int'>

2 (()) # outputs <class 'str'>
3 ((4.67)) # outputs <class 'float'>
User Input

The input () function, returns a string. This can be really useful if we want to do something
with a string. However, if we want to do something with a number, this is less useful.
We can use the float() or int() functions to convert into floats or integers respectively.
Examples of this can be seen below.

There is another function which can be used. The eval() function returns either a float
or integer depending on the value passed into it. It can be useful in situations where the
value entered by the user could be either floating point or integer.

LANGUAGE: Python3

1 # convert to float
2 floatInput = (()

4 # convert to an integer
5 intInput = (())

Arithmetic Operations

Where an arithmetic operation involves both a float and integer, the integer is automat-
ically converted to a float then the operation is carried out. For example, in the oper-
ation 7+1.5, the 7 would be converted to 7.0. Therefore, the calculation would then be
7.0+ 1.5 = 8.5.

Division
The / operator always performs floating point division, hence 11 / 4 = 2.75.
The // operator performs integer division, where it is given two integers as inputs, the

result will be a truncated integer; as seen in the following example 11 // 4 = 2
The % operator gives the remainder of an integer division, hence 11 % 4 = 3.

Issues with Floating Point Arithmetic

Floating point numbers are represented within the computer using a fixed number of
space (64 bits), this means that there is a limit to the range and accuracy of the number
which is able to be stored.

There are some numbers, 0.1 for example, which are unable to be represented within this
size limitin binary, this can lead to issues with the value of a float number after performing
mathematical operations on it.

This problem is true of all programming languages that use floating point numbers.

compiled at 8 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 3. COMPUTING WITH DATA AND NUMBERS

Python’s Numeric Functions

There are a number of useful built-in functions in Python which help with maths.

The round () function takes a float as a parameter and returns the rounded value to the
nearest int. It takes a second optional parameter which allows you to specify the number
of digits after the decimal point to round to, as seen below.

LANGUAGE: Python3

| intRound = (6.6) # equals 6
2
3 floatRound = (6.3345742, 3) # equals 6.335

The abs () function returns the absolute value of a number which is passed in as a param-
eter.

The pow () function takes two parameters, the first being the number and the second being
the power of it we want to calculate, as seen below

LANGUAGE: Python3

| powerTwo = (2, 3) # equals 8
2 powerThree = (3, 2) # equals 9

This function is the same as the ** operator.

Math Module

Sometimes things we want to do mathematical things in Python which the base lan-
guage can't do. To be able to do this, we import a library. This is some pre-written code
which we can use in our programs.

To be able to use the math library, we first have to import it

LANGUAGE: Python3

1 math
2 # or alternatively, if the line above doesn't work, use line below
3 math *

The math module provides a number of useful things including some constants (eg, math.pi)
and mathematical functions (eg, math.sqrt ().

compiled at 9 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 4. GRAPHICS, OBJECTS AND HIGH QUALITY CODE

Page 4

Graphics, objects and high quality
code

fh10-10-22 ®15:00 ™= Nadim @ RB LTT

Graphics

Graphics Introduction

Python, by default, does not contain a graphics system. We have to load the graphics code
into the program, much the same as we do for the maths module. The graphics module
we will be using was written by John Zelle. This defines the new classes which we have to
use. The line of code shown below needs to be used at the top of the working python file
to import the graphics module.

LANGUAGE: Python3

1 graphics *

The graphics module does not come pre-installed to Python 3 (like math) does. The pack-
age needsto be downloaded and saved either to where Python expectsto find its modules
or to the directory in which the file which uses it is saved.

Using the Graphics Module

Now we have loaded the graphics module, we can use it. To start with, we need to create
a graphics window. We should assign it to a variable so that we can access it later and use
it. The code to do this is shown below.

LANGUAGE: Python3

1 win = GraphWin(, width, height)

The GraphWin() constructor has a number of optional parameters. Where these are omit-
ted, the window will default to be 200px by 200px.

There are a number of different shapes available through the module.

To create a point object (which we need for a whole host of different things), you have to
instantiate an object; the syntax for this is shown below.

LANGUAGE: Python3

1 p = Point(10,20)

Now we have a point (currently completely independent of the window we created ear-
lier), we can do things with it. For example, we can draw it on the window, set its outline
then move it to a different coordinate on the window.

compiled at 10 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 4. GRAPHICS, OBJECTS AND HIGH QUALITY CODE

LANGUAGE: Python3

| p.draw(win)
2 p.setOutline()
3 p.move (40,10)

Notice how when we want to do something with p, we use the identifier (p) followed by a
dot (.) followed by the name of the method which we want to apply to it (eg draw()).

We can also create circles (and lots of other shapes too)! The creation process for this is
much the same as for a point. The syntax for this is shown below.

LANGUAGE: Python3

1 ¢ = Circle(Point(10,10),30)
2 c.setFill()
3 c.draw(win)

Notice how on line 1, we use a point to declare the coordinates of the circle.

Accessing Information

So far, the methods we have looked at manipulate the data, they set information. We can
use get methods to get information about the various objects we are currently using. For
example, we can use getX() to get the x coordinate of an object.

High Quality Code

High Quality Code

Code that is readable and code that is correct.

Readable Code

Program code is considered to be readable code where it can be easily understood by any-
one who is familiar with programming in the language used but not necessarily familiar
with what the code is supposed to be doing. This is important because in industry; soft-
ware is often written and maintained by teams of people, the later can sometimes involve
different people to the former.

To write readable code, it isimportant to name everything (functions, variables, etc...) with
sensible names, use whitespace, write documentation (comments throughout the code
or an accompanying document) and avoid over-complicating the code/ write repetitive
code.

Good Names

Names of variables and functions must be legal. This means they must begin with either
a letter or underscore, and only consist of letters, numbers and underscores. Also, they
must not be keywords.

It is recommended to stick to one style of variable naming, for example camelCase.

When choosing names, it is good to choose something that relates to what the variable
will be storing (eg name for the name of a user). Try to avoid abbreviations and using single
letter names (apart from where it would be silly not to use them).

Whitespace

Where there is a block of code (e.g., functions, loops), these must be indented, with a tab.

compiled at 1 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 4. GRAPHICS, OBJECTS AND HIGH QUALITY CODE

There are a number of other standard conventions for whitespace: leave blank lines be-
tween functions; use a single space either side of an assignment operator; use a single
space after commas.

Do not put whitespace between function names and brackets or before colons.

Length of Lines of Code

It is recommended to use 80 characters as a limit on how long a line of code can be. This
makes the program easier to read and means that code will not be cropped or wrapped
when you print it.

Documentation

When writing code, it is very good practice to document what your code should be doing.
This helps when you return to your code in the future or if someone else has to do some-
thing with your code, it will help you understand what is going on with it. Documentation
can be done in the form of comments.

Comment

A line of code which is ignored when the program is run. It allows developers to an-
notate their code.

It is @ common misconception that more comments mean better code. This is not the
case. In fact, if the code is really well written then comments shouldn’t be needed.

Testing

When writing programes, it is a good idea to design test data (inputs which you can enter
into the program where you know what the output should be so you can tell if the pro-
gramme is working properly or not) before you begin programming. This allows you to
test your program at various stages of development to make sure that your program is
working correctly.

compiled at 12 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 5. COMUTING WITH STRINGS & FILES

Page 5

Comuting With Strings & Files

#17-10-22 ®15:.00 = Nadim Q Zoom

Strings
Strings are kinds of sequences, there are other kinds of sequences which we will come
across later in Python.

String Operations

There are a number of different operations we can perform on strings. The + operator con-
catenates two strings together and the * operator allows a string to be repeated multiple
times; both can be seen in the program below.

LANGUAGE: Python3

1 words =

2 (words+)

3 (words * 3)
LANGUAGE: Unknown

1 Hellothere

2 HelloHelloHello

The function len(stringName) returns the number of characters in a string.

String Indexing

A string is a sequence of characters, each of the characters can be accessed individually
using its index. Indexing begins at the first character, which has the index 0. Moving
through the string, the indexes increase. We can access individual characters using the
index notation, as seen below.

LANGUAGE: Python3

| phrase =
2 (phrase[4])

LANGUAGE: Unknown
g

Python strings can also be indexed with negative indices where -1 is the position of the
final character, -2 is the position of the penultimate character, and so on.

compiled at 13 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 5. COMUTING WITH STRINGS & FILES

String Slicing

As well as being able to access individual character, we can access sub-sets of characters,
also known as substrings. To do this, we use the notation string[start:endPlusOne]. This
gives us a substring starting at position start and ending one position before endPlusOne.

String Methods

Along with the 1en() operation described earlier, there are a number of other useful string

methods built in to python. stringName.upper () converts all letters within the string to up-

percase. stringName.replace(old, new) replacesallthe occurrencesof old with new. stringName. count (
counts all the occurrences of toFind within the string. stringName.split () splits the string

into separate items in a list, split where the spaces were in the string.

String Formatting

Often programs need to display nicely formatted outputs. This can be achieved using
the .format () method. The .format () method takes parameters of variables which need
to be inserted into the string the method is applied to. Within the string, curly braces are
inserted which contain the index of variable to be inserted within the . format () command;
this can be seen below.

LANGUAGE: Python3

a 12.55

b 4

myString = . (a, b)
(myString)

N W N o

LANGUAGE: Unknown

1 It will cost 12.55 pounds for 4 bottles of wine

We can use the .format () method to format numbers and spaces too. This is done within
the curly braces, where we add a colon then the formatting definition. The number before
the decimal point is the total number of characters to include and after the decimal point
tells python to use 2 decimal places. This can be seen below.

LANGUAGE: Python3

myString = . (a, b)
2 (myString)

LANGUAGE: Unknown

1 It will cost 12.55 pounds for 4 bottles of wine

Where the number before the decimal point is greater than the total length of the data
to be inserted, Python pads out the gap with spaces.

If the number before the decimal point is smaller than the length of the data to be in-
serted, Python will ignore the number before the decimal point and will format the data
as specified after the decimal point.

We are able to control where the padding text is using < (padding to the right), > (padding
to the left) and ~ (equal padding each side). An example is shown below. The number is
the total number of space allocated to the padding and the data to be inserted.

compiled at 14 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 5. COMUTING WITH STRINGS & FILES

LANGUAGE: Python3

1 (. ())

LANGUAGE: Unknown

| Here is a WORD for you!

Sequences

Strings and lists are both examples of sequences, as a result of this, they share many prop-
erties. One such property being the ability to loop through all the indices within the se-
guence and perform an action with it. Another such property is the ability to concatenate,
index and slice sequences.

Basic File Processing

This section will only introduce the processing of basic text files, which contain sequences
of characters.

Text files are generally a few lines long, with each line ended by a special newline character.
In python, this character is \n.

When Python reads in a text file, it reads it in as a single string, for example

to
be or not
to be

would be read in as

"to\nbe or not\nto be\n"

Basic file handling

In the following examples, the text file we are using will be called myfile.txt and that it is
in the current directory.

To use the file, we first have to open it, as part of this we associate a variable with it and we
have to declare the mode which we want to open the file in. The basic syntax is as follows

LANGUAGE: Python3

1 variableName = (fileName, mode)

In our example of wanting to open "myfile.txt” to read, we would use the following syntax

LANGUAGE: Python3

1 inFile = (,)

After we have processed the file, we have to close it. This ensures the correct correspon-
dence between the file variable and what is actually on the disk.
The syntax to close the file is .close ()

compiled at 15 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 5. COMUTING WITH STRINGS & FILES

Reading Data From A Text File

To read data in form the file, we have two options. We can either use .read() which reads
the entire file's contents into a single variable or use .readlines () which reads the file line
by line into a list where each lineisa different elementinthelist. Thereisalsoa .readline()
method which only reads a single line at a time, this can be used where the file to be read
inisvery large and it would be detrimental to the memory of the system to read the whole
file in at once. We can also use a for loop to iterate through the file, reading it line by line.

Writing to files

When we want to write something out to a file, we first have to open it for writing. This is
done by using mode as "w". This will either create the file, or if the file already exists, destroys
its contents. We can then use a print statement to write out to the file, as seen below

LANGUAGE: Python3

1 (contentToWrite, =variableNameOfFile)

We then have to remember to close the file, this will ensure that the data is written to
disk.

compiled at 16 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 6. DEFINING FUNCTIONS

Page 6

Defining Functions

fh 24-10-22 ®15:00 ™= RB LTI @ Nadim

Concept of Functions

In the programs we have written this far, we have been using functions to contain many
smaller programs within one file. However, most programs out there in the ‘real world’
are longer than the programs which we've written so far.

Typically a program is a collection of several funciton definitions. Functions help us break
large problems into smaller parts; improve the readability of code; and avoid repetition
whereby we write similar code over and over again.

Breaking a large problem down using Functions

Often, when we are designing solutions to large problems we will break the problem down
into smaller sub-problems. These sub-problems are much easier to solve, making the
overall problem easier to solve. Some of the sub-problems which we first come up with,
might be able to be broken down further into even smaller sub-problems, it is often these
which can become programmed functions.

Parameters

When calling a function, it is useful to be able to pass data into the function so that it
can perform an action on this. To do this, we use something called a parameter. In the
example code shown below, the function (greet ()) takes a single parameter, this is used
in the print statement. Note that where the function is called from, we must supply an
argument in the brackets or we will get an error.

LANGUAGE: Python3

greet (name) :
2 (+ name +)

4 greet ()

Example Execution

In Lecture 08d notes on Moodle, there is an example line-by-line execution of a func-
tion with parameters.

Returning Values

Whilst it can be useful to have a function that does something, and doesn’t feed back
into the main program, this isn't useful in reality. Functions also have the option to re-
turn a value at the end of execution to where they were called from in the main program.

compiled at 17 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 6. DEFINING FUNCTIONS

There are examples of this throughout Python which we have used already (for example,
float()). The code below shows an example of a function which takes a parameter and
returns a value.

LANGUAGE: Python3

addTwo (x) :
y =x+2
y

3
addTwo (a)
(b) # outputs 5

[oauN
non

Note that the return keyword defines what will be returned to the main program and
that within the main program, there needs to be somewhere for the returned value to go
otherwise the program will throw an error.

Returning Multiple Values

We may also find it useful at times to write functions which return multiple values. The
code snippet shown below demonstrates how this is done.

LANGUAGE: Python3

1 sumDiff (nl,n2):
2 nl+n2, nl-n2
3 s, d = sumDiff (10,3)

4 (s) # outputs 13
(d) # outputs 7

Future Weeks

The concepts introduced in this week are used throughout the upcoming weeks and in
the coursework.

In Class Test

For the in class test this week, we will be instructed to download a python file from Moodle
which will contain a stick man.

We will have to do something to the stick man (for example, add a top hat and a cane).
This will be worth 6 marks. The sheet may not be photo copied in colour, pay attention to
the colours written in the document.

The remaining marks in the test will come from making other things appear and move
on the screen. This will be worth 4 marks.

Code quality, as well as outputs, will be assessed. We will not be marked down for lack of
comments at this stage however we may loose marks if the code is inefficient or repetitive.
This would be one or two marks at most.

compiled at 18 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 7. DECISION STRUCTURES, IF STATEMENTS AND WHILE LOOPS

Page 7

Decision Structures, IF Statements
and While Loops

fh 07-11-22 ® 1500 ™= Nadim @ RB LTT

Up to this point in the course, all the code we have been written is executed sequentially,
one line after the other. In this lecture, we'll be looking at how we can control the flow
through a program using decision structures and how we can use loop structures that
allow us to execute statements repeatedly.

Decisions

Algorithms can contain decisions. A commonly used decision structure is called an if
statement. If statements take a condition (the thing which the output is dependent on)
and they can have a number of possible outputs. An example of a simple if statement is
shown below.

LANGUAGE: Python3

1 x = 45
2 (x >= 40):
3 ()

Flowcharts can also be used to represent decision structures.

Conditions

Conditions are expressions of the data type bool of Boolean. This data type has just two
values, True and False.
We can form Boolean expressions using the following operators.

compiled at 19 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 7. DECISION STRUCTURES, IF STATEMENTS AND WHILE LOOPS

Syntax In English... Code Example Explanation

== Equal-to X == Returns True if X
is equal to Y; oth-
erwise returns
False.

I= Not-equal to X '!=Y Returns True if X
is not equal to Y,
otherwise returns
False.

> Greater-than X>Y Returns True if X
is greater than ',
otherwise returns

False.
>= Greater-than or | X >=Y Returns True if X
equal-to is greater than or

equal to Y; oth-
erwise returns
False.

< Less-than X <Y Returns True if
X is less than Y;
otherwise returns

False.
<= Less-than or | X <=Y Returns True if
equal-to X is less than or

equal to Y; oth-
erwise returns
False.

Multi-Way Decisions

We will often need to have multiple outcomes from a decision structure. There are two
additional bits we can use in the if statement, elif and else.

elif

ElLse-IF structures allow us to have multiple conditions in one if statement.

else

Else structures will be executed if no if or elif conditions are true. In the example below,
a comment is outputted to the user based on the mark they entered.

LANGUAGE: Python3

1 mark = (())
2 mark >= 70:
3 ()
4 mark >= 60:
()
6 mark >= 50:
7 ()
8 mark >= 40:

compiled at 20 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 7. DECISION STRUCTURES, IF STATEMENTS AND WHILE LOOPS

io :
1 ()

Designing Decision Structures

When designing decision structures, it is most efficient to write the if statement such that
the code executed inside the if statement is executed in rarer cases than not executing
it. For example, a kebab shop where orders over £50 get a 10% discount, the discount
application code would be placed inside an if statement, rather than always being applied
then if the order is under £50, the discount is reversed.

Review of For Loops

For Loops are used to iterate through a sequence of values. A for loop includes a loop
variable, a sequence and a body.

In most for loops we have written so far, we have been using the range () function to allow
us to iterate through a series of numbers. The range () function is actually more complex
than it looks. It can take three arguments, range(m, n, s) where m gives the start of the
sequence, n the step after the stop point and s give steps. This can be seen in action, in
the code below.

LANGUAGE: Python3

1 X (5, 0, -1):
2 (x)

LANGUAGE: Unknown

a N wWN o
=N Wb o

Nesting For Loops

We are able to nest for loops inside each other. When doing this, its important to ensure
that the two loops have different loop variables, for example x and y.

compiled at 21 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 8. WHILE LOOPS, BOOLEANS AND FURTHER LOOPS

Page 8

While Loops, Booleans and Further
Loops

B 14-11-22 ®15:00 ™= Nadim @ RB LTT

While Loops

Whilst it can be useful to iterate a defined number of times, often we need to iterate until
a condition changes. The time taken for this condition to change may be different ev-
ery runtime. For this reason, there's another type of loop. The while loop iterates until a
condition is met. The basic syntax is as follows.

while condition:
statement (s)

At every run of the loop, the condition is checked and if the statement is True, the body of
the loop is executed, then the loop returns to the top to check the condition again and if
the condition is False, the body is skipped and the loop terminates.

When designing a while loop which iterates until the user instructs it to stop; the user
can directly change the loop condition variable inside the loop. However, this isn't great;
it would be better to use a sentinel loop.

Sentinel Loop

Sentinel loops are loops in which the question is asked before the loop is entered, then
the loop begins with the processing before asking the question at the end. This reduces
unnecessary processing whereby if the loop is about to be exited from or it doesn't need
to be entered, the processing of that input doesn't need to happen. The basic pattern is
outlined below

value = input()

while value != sentinel:
process value
value = input()

Boolean Operators

Python includes the and, or and not boolean operators. These work exactly the same as
the logic gates do, except a 1is represented by True amd a O is represented by False.

If we are writing a condition which uses multiple statements, joined by a boolean operator,
all statements have to be written in full.

Break

The break statement allows us to exit a loop as and where we want. The following code is
an example of input validation within a while loop.

compiled at 22 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 8. WHILE LOOPS, BOOLEANS AND FURTHER LOOPS

LANGUAGE: Python3

1 getOneToTen () :
2 True:
3 number = (())
4 number >= 1 number <= 10:
6 (G)
7 number

The decision to use a break, as above, or to use a different condition for the loop and change
that to exit the loop is up to the developer and their opinions on readability of code.

compiled at 23 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 9. DESIGN AND SIMULATION

Page 9

Designh and Simulation

fh21-11-22 ®15:00 ™ Nadim Q@ RB LT1

Coursework is now available on Moodle in the General Section. There is a FAQs document
linked below it. The coursework is due on 13th December at 1lpm.

Introduction

Up to this point, most of the programs we have been writing have been fairly short. This
lecture will introduce a concept called ‘Top Down Design’ whereby a big problem (ie a
complete program) is broken down into a series of smaller sub-problems, which are easier
to solve. The idea of top-down design is to express a solution to a large problem in terms
of smaller sub-problems.

Generating Random Numbers

We can use the random module to generate a random number as can be seen in the ex-
ample below.

LANGUAGE: Python3

1 random *
2 (random()) # outputs 0.95310838187740532

Process of Top-Down Design

The first step to top-down design is to decide the inputs & outputs for the program.
We then look at the main program flow, which will probably follow the following

1. Get input from the user
2. Run the main processing code on those inputs

3. Output something to the user

First Level Design

At the first level of design, we write the main () function. To do this, we assign names to the
functions which we have designed in the step above. As part of this, we work out what
parameters these functions will need and what values they will return.

Second Level Design

Now we are left with sub-problems. For each, we know what parameters they will take
and what values they will return. As part of doing this we might realise that there is a
sub-sub-problem somewhere. This will probably be a bit of a sub-problem which is more
complex than the rest. At this stage we can just fill in parameters and the function name
as we did for first level design.

compiled at 24 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 9. DESIGN AND SIMULATION

Third Level Design

We now are left with sub-sub-problems. For each of them, we know what parameters
they will take and what values they will return. As part of doing this, we might realise that
thereisa further problem (for example, deciding if a game has been won or not) which we
will solve outside of this function. At this stage we can write the returned values, function
name and any parameters which it will take.

Fourth Level Design

Problems at this stage will probably be very small and quick to implement. If there are
any further sub-problems they pose, then more levels of design can be added as needed.

Execution

As our program is now written in its own file, we can execute it by calling the first-level
design function at the bottom of the file. All the other functions can come anywhere
above this line.

compiled at 25 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 10. LECTURE: USING LISTS, TUPLES AND DICTIONARIES

Page 10

LECTURE: Using Lists, Tuples and
Dictionaries

fh28-11-22 ®15:00 ™= RB LTI @ Nadim

NB: These notes were types up during January 2023 in preperation for Teaching Block
2. The lecture did not cover this content at the time as coursework support was given
during lectures and practicals for the rest of Teaching Block 1 after it was released.

Storing Data

Often when programming, our programs need to process large collections of data of the
same type. This may include: words in a document, temperatures for each day in a year,
and marks from student’s work.

There are a number of different data structures which can be used to store data. Three of
these will be explored in this lecture.

Lists

Some languages, for example Java or C#, use the term ‘array’ instead of ‘list’.
An example of creating two different types of list can be seen below.

LANGUAGE: Python3

=[0, 1,1, 2, 3, 5, 8, 13, 21, 34]
[3 s s]

1 fibonacci
2 seasons =

List Indexing

Lists are indexed in the same way as strings. They start with position 0. Lists can also be
indexed using negative indices.

LANGUAGE: Python3

(seasons [0]) # outputs 'spring'
(fibonacci[8]) # outputs 21
(seasons[-1]) # outputs 'winter'
(fibonacci[-2]) # outputs 21

N W N o

Basic List Operations

Lists, like strings, have operators for concatenation + and repetition *.
We can find the length of a list with the built-in function 1len()

LANGUAGE: Python3

1 (fibonacci + [55,89])
> # outputs [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

compiled at 26 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 10. LECTURE: USING LISTS, TUPLES AND DICTIONARIES

3

4 ([10, 4] = 3)

5 # outputs [10, 4, 10, 4, 10, 4]
6

7 ((seasons))

8 # outputs 4

List Slicing

We can use list slicing to get sub-lists from the lists. This behaves in the same was as
string slicing and uses the same syntax. The substring contains everything from and in-
cluding the first value up to and not including the final value. Where the first or last value
is omitted, it is assumed to be the beginning/ end of the list.

LANGUAGE: Python3

| fibonacci = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
2 (fibonacci[3:7])
3 # outputs [2, 3, 5, 8]

(seasons[1:-1])

4
5 seasons = [s) ,]
6
7 # outputs ['summer', 'autumn']

8 (seasons[2:])

9 # outputs ['autumn', 'winter']
§0 (seasons [:-2])

1 # outputs ['spring', 'summer']

Iteration through a list

We can iterate (loop) through the elements in a list using a for loop.

LANGUAGE: Python3

1 season seasons:

2 (season, end=" ")

5

4 # outputs spring summer autumn winter

If we wanted to iterate through the indices of a list, we can use the verbllen()| function to
get that value.

Membership Checking

It can be useful to know if a value appears in a list. This can be achieved using the in
operator. in returns True if the value appears and False if the value does not.

Changing an element of a list

Lists are mutable, this means we can alter their elements. We can change list elements
using assignment statements with list indexing.

LANGUAGE: Python3

1 shopping = [s s s]
2 shoppingl[2] =

3 (shopping)

4 # outputs ['jam', 'eggs', 'butter', 'sugar']

List Methods

append can be used to add a new value to the end of a list.

compiled at 27 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 10. LECTURE: USING LISTS, TUPLES AND DICTIONARIES

LANGUAGE: Python3

| shopping.append()
2 (shopping)
3 # outputs ['jam', 'eggs', 'butter', 'flour', 'eggs']

remove can be used to remove the first occurrence of an element.
index can be used to get the first position of the first occurrence of a value.
sort method sorts the list into order.

Storing Objects in a list

We can store any kind of data in lists, not just numbers and strings. Objects get stored in
the same way as any other data type.

Mixed-Type Lists

Lists can contain different types of data. This can make code difficult to understand there-
fore it it not regarded as best practice.

Nested Lists

Lists can be nested within other lists. This can be really useful.

LANGUAGE: Python3

1 matrix = [[1, 2], [3, 4]1]
2 (matrix [1][0]) # outputs 3

Tuples

Sometimes its useful to collect two or more related items of information together. Atuple
can be used for this purpose.

LANGUAGE: Python3

1 exampleTuple = (, 44)

We use parentheses rather than square brackets to denote a tuple compared to a list.
Elements can be indexed using the same notation as for lists and strings.

Tuples are immutable, this means we can’t change the elements after assignment.
Tuples are often used to return multiple values form a function and we can store tuples
in a list.

Dictionaries

Dictionaries can be regarded as unordered collections of data, whose values are indexed
by key. Dictionaries are sometimes called mappings, hashes or associative arrays. Dictio-
nary literals are written as aa sequence of key:value pairs within braces { & }.

The example below shows a mapping from string keys to integer values.

LANGUAGE: Python3

1 shopping = { : 2, : 4, : 1}

We use the key within square brackets to access the value this key maps onto

compiled at 28 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 10. LECTURE: USING LISTS, TUPLES AND DICTIONARIES

LANGUAGE: Python3

1 (shopping[1) # outputs 4

We can use the key within square brackets to update a value in a dictionary, as we would
in a list. We can also add new keys and values to a dictionary using the key in square
brackets and assigning a value to it.

We can test if a particular key appears in a dictionary using the in operator.

We can delete entries using Python's built in del command.

We can obtain lists of all the keys and all the values in a dictionary using the keys() and
values () methods inside the 1ist () function.

We can iterate through the keys using a for loop, and use this to access the value (with
square brackets).

compiled at 29 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 1. OBJECT-ORIENTED PROGRAMMING

Page 11

Object-Oriented Programming

1 2023-01-23 ®15:00 ™= Nadim Q@ RB LT1

We have been using pre-written classes lots so far The graphics.py module provides a
number of classes which we can use to create simple graphical displays on GUlIs.
We will now look at creating our own classes.

More Information On Classes

Like variable and function names, class names have to be unique. It is regarded common
practice for class names to start with a capital letter (for example Animal).
There are three important components to all classes.

Constructor This instantiates an object based on the class. The constructor of a class is a
function with the name __init__.

Instance Variables These are variables which each instance of the class (an object) will
have.

Methods These are things which the instance of a class can do. Methods are functions in
a class.

Classes In Python

A class is defined using the class keyword in python.

Constructor

The constructor is the code which is run whenever a new instance of the class is needed.
An example of a constructor is shown below. Note the parameter self is passed into it,
this is the same as for all methods within a class and allows you to access the instance
variables.

LANGUAGE: Python3

1 Pet:
2 __init__(self, providedName):
3 self .name = providedName

Instance Variables

To be able to access instance variables, every method within the class must have its first
parameter of self. Other parameters (for example, a value from the user that is being
stored in an object) can be passed in after self.

When using the methods of a class, you don't need to pass any values for the self param-
eter, this is automatically passed to the method.

compiled at 30 of 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 1. OBJECT-ORIENTED PROGRAMMING

Methods

A class can have as many or as few methods as required. They are defined the same way
as a function would be, using the def keyword.

Printing A Class

The __str__ method can be used to return a printable representation of the class. See
below for an example (continued from the Pet example above).

LANGUAGE: Python3

__str__(self):
returnString = . (self .name)
returnString

SON I N

Note that you don't actually print the formatted statement in the method, you return it.

compiled at 31 0f 33 M30299
2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 12. FURTHER OBJECT ORIENTED PROGRMAMING

Page 12

Further Object Oriented
Progrmaming

1 2023-01-30 ®15:00 ™= Nadim @ RB LTT

Composition

Composition is one of the fundamental concepts in object oriented programming. Com-
position describes a class that references one or more objects of other classes in instance
variables.

Composition Example

An example of composition can be found in Practical 1. The ShoppingCart class holds
a list of items which are ‘in’ the cart.

Inheritance

When programming using the object oriented paradigm, we wil often find that two classes
are similar, however one may have additional attributes required.

Subclasses can access all methods and attributes of superclasses.

A simple example of this is to have a Laptop class which stores information about laptops.
Gaming Laptops are a special type of laptop as they also have a GPU. This means that the
gaming laptop class should inherit attributes from Laptop and should have some addi-
tional methods.

In this example, the GamingLaptop inherits from Laptop; this can also be said as GamingLaptop
extends Laptop. Laptop is the superclass of GamingLaptop Or GamingLaptop is the subclass of
Laptop.

In the example below, it can be assumed that the Laptop class is defined with a constructor
and string method.

LANGUAGE: Python3

GamingLaptop (Laptop):
__init__(self, brand, model, basePrice):
().__init__(brand, model, basePrice)

N o DN NN o

self.gpu =
__str__(self):
output = O.__str__QO
8 output += . (self.gpu)
9 output
compiled at 32 of 33 M30299

2023-09-12 15:24:07+01:00

Thomas Boxall PAGE 13. DEBUGGING & EXCEPTION HANDLING

Page 13

Debugging & Exception Handling

1 2023-02-20 ®15:00 ™= Nadim Q@ RB LT1

Debugging

Debugging refers to the process of finding bugs in software and fixing them.

When a programme crashes, it will usually give an error which we can use to identify the
problem.

Editors contain debugging tools, including breakpoints, which can be used to ‘step’ through
the code and identify which line exactly is throwing an error. This can be used to inspect
variables on each line as well.

Exception Handling

A piece of software which has been well written and debugged fully may still crash due to
run-time exceptions. Exception handling is the process of preparing your code to avoid
failure from certain exceptions.

This can be done using try catch statements, as seen below.

LANGUAGE: Python3

getSize ():

size = (())
size
ValueError:
()
4

N o 0PN NN o

compiled at 33 of 33 M30299
2023-09-12 15:24:07+01:00

	Module Introduction
	Writing Simple Programs
	Computing with Data and Numbers
	Graphics, objects and high quality code
	Comuting With Strings & Files
	Defining Functions
	Decision Structures, IF Statements and While Loops
	While Loops, Booleans and Further Loops
	Design and Simulation
	LECTURE: Using Lists, Tuples and Dictionaries
	Object-Oriented Programming
	Further Object Oriented Progrmaming
	Debugging & Exception Handling

